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Interactive applications require processing tens to hundreds of concurrent analytical queries within tight time

constraints. In such setups, where high concurrency causes contention, work-sharing databases are critical for

improving scalability and for bounding the increase in response time. However, as such databases share data

access using full scans and expensive shared filters, they suffer from a data-access bottleneck that jeopardizes

interactivity.

We present 𝑆𝐻2𝑂 : a novel data-access operator that addresses the data-access bottleneck of work-sharing

databases. 𝑆𝐻2𝑂 is based on the idea that an access pattern based on judiciously selected multidimensional

ranges can replace a set of shared filters. To exploit the idea in an efficient and scalable manner, 𝑆𝐻2𝑂 uses a

three-tier approach: i) it uses spatial indices to efficiently access the ranges without overfetching, ii) it uses an

optimizer to choose which filters to replace such that it maximizes cost-benefit for index accesses, and iii) it

exploits partitioning schemes and independently accesses each data partition to reduce the number of filters

in the access pattern. Furthermore, we propose a tuning strategy that chooses a partitioning and indexing

scheme that minimizes 𝑆𝐻2𝑂’s cost for a target workload. Our evaluation shows a speedup of 1.8 − 22.2 for

batches of hundreds of data-access-bound queries.
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1 INTRODUCTION
When supporting interactive applications, analytical databases need to sustain highly concurrent

workloads with stringent response time constraints. For example, dashboards and reporting in Meta

[32] and Youtube [6] require processing hundreds of queries concurrently and need to maintain

low response times (i.e., from sub-second to a few seconds). However, in query-at-a-time databases,

high concurrency causes load interaction; as contention between queries is increased, their response

time is also increased. Hence, load interaction jeopardizes response time constraints.

Work-sharing databases [3, 5, 10, 33] mitigate load interaction by using a shared execution

model. A global plan, which consists of a network of shared operators, simultaneously accesses and

processes data for multiple queries, eliminating overlapping work. During query processing, input
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data flow from the data-access operators to the roots of the plan. In a query batch, individual query

response time is bounded by the global plan’s total processing time [10].

Nevertheless, work-sharing databases suffer from a data-access bottleneck. Global plans access

data using shared scans followed by specialized shared filters that batch-process the predicates of

all queries. This execution pattern incurs high processing time for two reasons: i) scans access the

full data, including tuples that are redundant for all queries, and ii) while shared filters optimize

predicate evaluation by reducing comparisons, they are implemented as index lookups [22, 36] and

hence are more time-consuming than traditional filters. Global plans that collectively process a small
fraction of the data or require several shared filters spend most of their processing time in data access.
The cost is severe for access-heavy workloads, and also notable even for join-heavy workloads.

Traditionally, scan-oriented systems employ data skipping [34, 35, 37] to reduce the data access

cost. Skipping operates over predetermined partitions that have been chosen based on the predicates

of historical workloads. Then, by using lightweight metadata, it only scans the partitions that may

contain parts of the requested data. However, in work-sharing environments, data skipping is

inefficient and works well only in limited use cases. This is because it is not robust to workload

shifts, and misalignments between partition boundaries and predicates that appear in runtime

batches lead to overfetching: even if only a single tuple is required, we have to scan and filter

the entire partition. Large query batches amplify this effect as they increase the probability of a

misalignment.

We propose 𝑆𝐻2𝑂 : a shared data-access operator that, by exploiting data organization and the

workload’s access patterns, optimizes data access and filtering in work-sharing environments. It

targets batches of tens to hundreds of queries with unpredictable filter values. Its only requirement

for improving performance is that, in each batch, at least one of the filter attributes is predictable.

Prior analysis on real-world workload from Sun et al. [34] supports the existence of predictable

filters, hence also filter attributes: 30% of the queries contain all predicates used for 80% of the

workload. Barring that assumption, which is necessary for most access methods, 𝑆𝐻2𝑂 achieves

the same performance as shared scans and filters.

𝑆𝐻2𝑂 is motivated by the following novel insight: for every set of filters in a batch, there exists a
partition of data into multidimensional regions where filtering decisions are the same for all contained
tuples.

Example. Consider a dataset of (𝑋,𝑌 ) tuples in [0, 100]2 and the following batch of queries:

Q1: SELECT COUNT(*) FROM T WHERE X < 50
Q2: SELECT COUNT(*) FROM T WHERE Y < 50

Therefore:

• All tuples of [0, 50) × [0, 50) are processed by both Q1, Q2.
• All tuples of [0, 50) × [50, 100] are processed only by Q1.
• All tuples of [50, 100] × [0, 50) are processed only by Q2.
• Region [50, 100] × [50, 100] is not processed by any query.

where 𝐴 × 𝐵 denotes the cross product of sets 𝐴 and 𝐵.

𝑆𝐻2𝑂 ’s key premise is that shared access to the required regions eliminates redundant accesses

and the need to process the filters used for constructing the regions. Still, to put this idea to use,

there are two challenges: i) efficiently accessing the regions and ii) handling dimensionality. First,

access to the regions needs to be exact. Overfetching data requires post-filtering which incurs

high processing cost in a work-sharing environment. Hence, 𝑆𝐻2𝑂 requires that data organization

supports exact access to the regions that are likely to be requested. On the other hand, as the

number of filtering predicates in the batch is increased, accessing the regions suffers from the curse

of dimensionality. An increase in the number of attributes has a multiplicative effect on the number
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of regions. In turn, regions become too sparse, and the number of contained tuples is insufficient to

amortize the cost of accessing each region.

𝑆𝐻2𝑂 addresses the two challenges with a three-tier approach:

On-demand multidimensional access.We observe that spatial indices enable efficient and exact

range queries on their indexed attributes. 𝑆𝐻2𝑂 introduces a novel shared access strategy on top

of existing spatial indices: it first identifies the regions to query based on a subset of the filter

attributes that appear in a batch, and then, uses the index for shared, efficient, and filter-free access
to each region. Hence, we can query exact ranges regardless of partition boundaries and avoid

redundant costs that the expensive shared filters introduce.

Access-pattern optimizer. As dimensionality is increased, there is a cross point where adding

one more attribute to the access strategy incurs more overhead than the shared filter that it strives

to avoid. The cross point depends on the choice of attributes; hence, choosing the optimal set of

attributes poses an optimization problem. 𝑆𝐻2𝑂 introduces a cost-based optimization strategy that

uses an analytical cost model. As a result, 𝑆𝐻2𝑂 maximizes the benefit for the available index and

given workload, and guarantees at least as fast access as shared scans.

Subspace specialization: In case the data is partitioned and each partition is indexed separately,

𝑆𝐻2𝑂 further reduces the number of regions. As only a subset of queries is interested in each

partition, the number of filters and the number of distinct attributes per partition is decreased.

By exploiting data-skipping information and by adapting the multidimensional access to each

partition’s queries and index, 𝑆𝐻2𝑂 further mitigates the curse of dimensionality.

The above properties show the importance of data organization for 𝑆𝐻2𝑂 ’s performance. Thus,

we propose a partition/index selection strategy that organizes data such that it minimizes 𝑆𝐻2𝑂’s

cost by tuning for recurring workload correlations and access patterns.

We implement 𝑆𝐻2𝑂 inside RouLette, a state-of-the-art work-sharing database. 𝑆𝐻2𝑂 drastically

accelerates data-access-heavy workloads, achieving up to 22.2𝑥 speedup compared to shared scans.

While 𝑆𝐻2𝑂 is most effective for data-access-heavy workloads, it is beneficial even for join-heavy

benchmarks such as SSBM and TPC-H. Finally, in adversarial cases, it is at least as fast as shared

scans and filters.

The contributions of this work are:

• Work-sharing databases suffer from a data-access bottleneck. To overcome this, we build

𝑆𝐻2𝑂 and propose an access strategy which is based on multidimensional regions instead of

shared scans and filters.

• Overfetching and post-filtering is expensive in work-sharing environments. By using spatial

indices, 𝑆𝐻2𝑂 achieves efficient and exact access to multidimensional regions.

• Choosing the access strategy’s attributes for probing the spatial index introduces a trade-off

between savings from shared filters and index-access overhead. We propose an optimization

strategy that, by using a data- and workload-aware cost model, maximizes net benefit.

• Predicate correlations isolate predicates in specific data subspaces. We exploit this to propose

a joint partition/index selection scheme that takes advantage of emerging workload patterns

and further reduces the number of regions and 𝑆𝐻2𝑂 ’s cost.

2 RELATEDWORK
We first present an overview of the state-of-the-art in work-sharing databases and discuss common

data-access strategies.

Work sharing. Work-sharing databases [3, 5, 10, 13, 33] address the need for high-throughput

analytical processing. They exploit overlapping work across queries to reduce the total processing

time, and hence increase throughput and mitigate load interaction. They express overlaps by using

a global (query) plan for all running queries. The global plan is a directed acyclic graph (DAG) of
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relational operators that process tuples for one or more queries and multi-cast their results to one

or more parent operators. In each of its roots, it produces the results of queries that participate in

the batch. Overlaps are represented by common paths in the DAG. Figure 1a shows a two-query

example. Join 𝐴 ⊲⊳ 𝐵 is common across queries Q1 and Q2, and thus we can compute it only once

and appropriately route the results. In this work, we are only interested in the data-access and

filtering operators in global plans.

Work-sharing databases can share operators between partially overlapping queries (i.e., that

use different predicates) using the Data-Query model [10]. The Data-Query model annotates

each intermediate tuple with a query-set that indicates to which queries the tuple contributes.

Operators in work-sharing databases process both the actual tuples and the corresponding query-

sets and produce correctly annotated output tuples. Hence, the Data-Query model increases sharing

opportunities and is used in recent work-sharing databases [3, 5, 10, 33]. 𝑆𝐻2𝑂 is applicable to such

systems: it can accelerate their data access and directly produces Data-Query model tuples for each

accessed table.

Shared scans. Shared scans amortize the cost of data access across multiple queries. They have

been used for both disk-based [13] and in-memory databases [28]. Cooperative scans [40] further

optimize shared scans for queries accessing different data ranges by scheduling I/O requests to

maximize bandwidth sharing and minimize latency penalties at the same time.

Crescando [36] enhances in-memory shared scans with the Data-Query model to achieve fast

and predictable performance for simple concurrent queries. Work-sharing databases either use

Crescando [10, 23] or implement shared scans and filters similarly [3, 33]. 𝑆𝐻2𝑂 outperforms in-

memory shared scans because it accesses data more selectively and amortizes downstream filtering

costs.

Index access. Indices provide each individual query with efficient data access, without costly

full scans and filters. However, as the number of concurrent queries is increased, index latency

is also proportionally increased due to load interaction. As Kester at al. [18] demonstrate, there

is a crosspoint where shared scans become more efficient. Furthermore, indices restrict work

sharing for downstream computation across queries. Hence, shared scans are typically preferred in

work-sharing databases. To our knowledge, the only work-sharing database that implements index

probes is SharedDB, which batches index probes to improve instruction and data cache locality and

to produce a shared set of tuples across participating queries [9].

Beyond work-sharing databases, OLTPShare [30] merges OLTP point queries into bulk index

lookups. Also, in the context of information filtering, Fischer and Kossmann [8] propose merging

identical probes into one index lookup and avoiding overlapping accesses between consecutive

probes. While merging probes reduces data access, it requires post-filtering for the probe’s results,

which is time-consuming with shared filters. Also, it has not been studied for workloads that use

predicates on multiple attributes, which complicates detecting overlaps between index traversals.

𝑆𝐻2𝑂 minimizes post-filtering and generalizes techniques that merge probes for multi-attribute

setups.

Data skipping. Data skipping accelerates selective queries in scan-oriented databases. For each

query, it prunes out data partitions that contain redundant data – it identifies such partitions using a

compact set of aggregates [24] over them. State-of-the-art approaches, such as Qd-tree [37], Jigsaw

[17], and the work of Sun et al. [34, 35], formulate optimization problems for partitioning the data

such that data skipping minimizes access for a target workload. 𝑆𝐻2𝑂 both competes and takes

advantage of data skipping. On the one hand, it outperforms data skipping for shared data access,

as it avoids excessive access and filtering due to misaligned predicates (i.e., with filter constants

not on partition boundaries). On the other hand, 𝑆𝐻2𝑂 uses data skipping information to specialize
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WHERE X >= 5 and X < 10
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WHERE X < 20
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[5, 10) : Q1
(-∞, 20) : Q2

X=15 Query-set 
= {Q2}

(b)

Fig. 1. (a) Global plan (b) From queries to predicate indices

data access for each partition and reduce dimensionality. Furthermore, this paper proposes a novel

partition/index selection algorithm for minimizing 𝑆𝐻2𝑂 ’s cost.

Materialized views.While this work focuses on work sharing, a large body of work [15, 27, 31, 39]

uses materialized views to reduce latency. Answering queries using views eliminates runtime

computations, such as joins and aggregations, but at the cost of amplified memory consumption. In

addition, views require that computation recurs across time so that the selected views are reused.

By contrast, work sharing is transient, and thus does not require a long-term memory investment,

and eliminates common computation only within each batch. As such, under high concurrency,

both views and work sharing suffer from data access and filtering, which 𝑆𝐻2𝑂 optimizes. As the

experiment of Figure 9b indicates, 𝑆𝐻2𝑂 is also beneficial for accelerating view access.

3 OVERCOMING THE ACCESS BOTTLENECK
𝑆𝐻2𝑂 addresses the problem of efficient data access in work-sharing databases. In this section, we

provide an overview of both the problem and the solution that 𝑆𝐻2𝑂 provides.

3.1 Scan-Filter in Shared Execution
In work-sharing databases data access is defined as the sequence of operators that access the data

and compute the Data-Query model query-sets for each tuple. Then, the tuples can be processed by

downstream operators such as joins and GROUP-BYs. Typically, shared data access is implemented

using shared scans that are followed by shared filters, i.e., filters that evaluate the predicates for

multiple queries at once and set the tuples’ query-sets accordingly.

The performance of shared filters is critical because i) filters are the first operators after scans,

hence they process a large fraction of the input, and ii) each filter may need to evaluate tens of

predicates. A naive implementation would construct each tuple’s query-set by going over all the

query predicates in the batch and checking which are satisfied and which are not. However, this

algorithm is linear to the batch size and introduces a significant overhead for batches of tens of

queries. To make shared filters efficient, prior work [5, 10, 22, 33, 36] proposes using predicate
indices (PIs).

Unlike conventional indices, which are pre-constructed, PIs are built at runtime and their lifetime

is the duration of the batch’s execution. Rather than index data, a PI indexes a set of predicates

that belong to different queries – typically each PI indexes the predicates on a specific attribute

[10, 22, 33, 36]. Indexing all predicates in the batch may require multiple PIs.

Shared filters evaluate predicates on different attributes by using the corresponding PIs. For each

tuple, they probe PIs, and set the tuple’s query-set accordingly. If the query-set becomes empty,

shared filters discard the tuple. Figure 1b shows the process of probing a PI that serves two queries;

probing with 𝑋 = 15 identifies that 𝑋 ∈ (−∞, 20), so the tuple belongs to Q2. After passing through
shared filters, tuples have query-sets that represent the results of the predicates for all queries.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Sioulas, et al.

For implementing PIs, this paper relies on grouped filters which are used in TelegraphCQ [22],

CJOIN [5], and RouLette [33]. Each grouped filter builds one index for all the predicates on a specific

attribute. Grouped filters evaluate query-sets by intersecting the queries with satisfied predicates

for each attribute. However, the same insights generalize for Crescando’s implementation [36],

also used in SharedDB [10], which inserts only one predicate per query to a grouped filter, and

processes the rest of the predicates as post-filters only for the queries whose indexed predicate is

satisfied.

3.2 Data-Access Overhead
Sharing data access amortizes the cost of both scans and predicate evaluation and thus mitigates

the impact of concurrency. However, in absolute numbers, data access per batch is still expensive:

each shared scan accesses the full table, which can be too large to read within milliseconds. Shared

filters are also time-consuming: each PI probe is essentially a join between the probe’s attribute

and the indexed predicates, and the cost of the ensuing query-set operations is increased with the

number of queries.

Expensive scan-filter-based data access introduces a performance bottleneck and adversely affects

interactive applications with stringent time constraints. The impact is maximum for batches with

limited downstream computation, such as queries over denormalized tables or selective queries.

Both classes of workloads occur in highly-concurrent environments in industry, e.g., the former

in decision-support queries in Amadeus [36] and the latter in dashboards that analyze a specific

user’s data [6, 32]. In such cases, data access dominates the total batch execution time. However, as

our experiments show, there is a significant performance penalty even for join-heavy workloads

such as SSBM and TPC-H.

3.3 SH2O: Efficient and Adaptive Access
We observe that much of the processing time spent in shared data access is unnecessary. First, PI

probes incur repetitive work. Similar tuples, which have almost the same attribute values, make PI

probes that produce the same access patterns, retrieve the same satisfied predicates and perform the

same query-set updates. Hence, the process of constructing the same query-set multiple times is also

redundant. Second, for selective queries, shared data access spends too much time for processing

tuples that are eventually filtered out.

We propose 𝑆𝐻2𝑂 , a shared data-access operator that aims to reduce the redundant data access

cost. To do so, it exploits the collective access pattern for the batch of queries to skip redundant

tuples and amortizes the cost of shared filters across groups of similar tuples. Naturally, 𝑆𝐻2𝑂

has maximum benefit for workloads where data access makes up most of the processing time

and performs at least as well as shared scans and filters for all workloads regardless of selectivity,

predicate correlations, and filter attributes.

𝑆𝐻2𝑂 works as a stand-in for data access operators, i.e., a shared scan followed by shared filters,

in work-sharing databases. It assumes a work-sharing database that works under the Data-Query

model, processes submitted queries one batch at a time and uses a set of predicate indices, one for

each filter attribute, to facilitate filtering. First, in an offline phase, a dedicated tuner partitions the

data, and for each partition 𝑝 , it builds a spatial index I𝑝 on a set of attributes 𝐴(I𝑝 ). The indexed
attributes may differ from partition to partition. This scheme enables isolating query predicates

that co-occur with other conditions to fewer partitions and specializing the selected index for the

partition-local access patterns. Assuming a workload with recurring patterns, both the partitioning

and the indices can be reused across batches.

Figure 2 shows how 𝑆𝐻2𝑂 performs data access at a high level. At execution time, 𝑆𝐻2𝑂 processes

each partition independently for the queries interested in the partition; hence, only the filters for

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



SH2O: Efficient Data Access for Work-Sharing Databases 111:7

PARTITION 1

PARTITION k

SH2O DATA-ACCESS PIPELINE

SH2O DATA-ACCESS PIPELINE
Prune 

queries
Attribute 
Selection MSA Post-

filtering

Prune 
queries

Attribute 
Selection MSA Post-

filtering

Fig. 2. 𝑆𝐻2𝑂 framework

the interested queries are considered. Instead of using the typical scan and filter pattern, partition-

local data access is driven by multidimensional shared access (MSA), our novel workload-driven
data-access technique which exploits the spatial indices that were built during the tuning phase. In

each partition, MSA replaces the shared filters on a subset of the indexed attributes F𝑝 ⊂ 𝐴(I𝑝 ).
The attribute selection optimizer chooses F𝑝 such that it hits a sweet spot between eliminated filter

cost and spatial index overhead. Finally, 𝑆𝐻2𝑂 processes the tuples that MSA retrieves using the

remaining filters that are not in F𝑝 .
Evidently, 𝑆𝐻2𝑂 ’s performance depends on the data partitioning scheme and the index used in

each partition. For this reason, we also investigate the problem of organizing the data to minimize

𝑆𝐻2𝑂’s total processing cost for a target workload. This paper formulates the reorganization

problem and proposes a unified partition/index selection algorithm, used by the offline tuner, based

on Iterative Dynamic Programming [19].

We present the above mentioned components as follows. Section 4 presents the MSA-driven

data-access pipeline for each partition. Section 5 shows the cost model and the enumeration strategy

for choosing the F𝑝 attributes. Section 6 generalizes 𝑆𝐻2𝑂’s data-access pipelines for partitioned

data. Finally, Section 7 presents the formulation and solution for the partition/index selection

problem.

4 MULTIDIMENSIONAL SHARED ACCESS
For each partition 𝑝 , 𝑆𝐻2𝑂 processes a data-access pipeline. The pipeline revolves around MSA,

which optimizes a scan-filter operator pattern for filters on attributes F𝑝 . In this section, we assume

that attributes F𝑝 are already given.

MSA is built on the following idea: there exists a set of multidimensional regions, which logically

partition the data, where the batch’s filters on F𝑝 always make the same filtering decisions for all

contained tuples. In these regions, filters on F𝑝 produce the same query-set for all tuples. MSA

identifies these regions and uses I𝑝 to access all regions with a non-empty query-set. By doing so,

it fetches only the corresponding tuples hence post-filtering is unnecessary. Thus, by accessing

each required region’s data once and augmenting it with the region’s query-set, MSA amortizes

expensive query-set operations and filtering costs across the entire region, and minimizes accessed

data.

In this section, we put MSA in the context of 𝑆𝐻2𝑂’s per-partition pipeline. We present the

mechanism for identifying MSA’s regions, and, subsequently, present the end-to-end data access

strategy.
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Q1:SELECT sum(Y) FROM table WHERE X >= 20 and X < 40
Q2:SELECT sum(Y) FROM table WHERE X >= 30 and X < 50
Q3:SELECT sum(Y) FROM table WHERE X >= 10 and X < 60
Q4:SELECT sum(Y) FROM table (WHERE TRUE)

Domain of X

10 20 30 40 50 60
Ranges

[-inf,10) [10,20) [20,30) [30,40) [40,50) [50,60) [60,+inf)
1000 1100 1101 1111 1110 1100 1000

Fig. 3. From queries to predicate index ranges

4.1 Computing SingleQuery-set Regions
Identifying MSA’s regions requires understanding under which conditions the filtering decisions

for a set of tuples remain invariant. We provide an analysis of these conditions.

A PI on a specific attribute exhibits locality. It defines a function that maps each value in the

attribute’s domain to a set of queries for which the indexed predicates are satisfied. Figure 3 shows

an example for the PI of four queries. Adjacent values are then likely to map to the same query-set,

e.g., 𝑋 = 25 and 𝑋 = 26 both produce the same query-set {𝑄1, 𝑄3, 𝑄4}. Thus, we can represent

each PI as a set of (𝑟,𝑄) pairs, where 𝑟 = [•, •) is a range in the corresponding attribute and 𝑄

is a query-set that indicates which queries are satisfied in the specific range. The ranges define

a partitioning on the attribute’s domain. When building the PI, we compute the ranges and their

corresponding query-sets by partitioning the domain across the boundaries of predicates values and

statically computing the predicates in each partition. In the given example, analyzing the predicates

gives 7 range-query-set pairs.

To generalize locality to a set of multiple attributes F𝑝 , we compose the ranges of one-dimensional

PIs. Let𝑑 = |F𝑝 | be the number of attributes used for the filters thatMSA replaces, and 𝑃𝐼1, 𝑃𝐼2, . . . , 𝑃𝐼𝑑
the corresponding predicate indices. Each predicate index 𝑃𝐼𝑖 is represented as a set of (𝑟,𝑄) pairs.
The following theorem gives the computation of single query-set regions:

Theorem 4.1. Let us assume 𝑑 predicate indices 𝑃𝐼1, 𝑃𝐼2, . . . , 𝑃𝐼𝑑 , and a random tuple (𝑟𝑖 , 𝑄𝑖 ) from
each index 𝑃𝐼𝑖 . Then, all data in 𝑟1 × 𝑟2 × · · · × 𝑟𝑑 will share the same query-set 𝑄∗ = 𝑄1 ∩ · · · ∩𝑄𝑑 .

This theorem motivates a hyperrectangle-oriented access strategy for two reasons: First, as

all tuples in the same hyperrectangle share the same query-set, we can perform the expensive

query-set operations only once per region and then just use the result to annotate each tuple.

Second, if 𝑄∗ = ∅ for a hyperrectangle, we can skip its tuples altogether. By using hyperrectangles,

we drastically reduce the data processed and the amortized cost per tuple.

MSA enumerates the hyperrectangles by computing the set of 𝑟1× · · ·×𝑟𝑑 . To avoid materializing

the cross-product of PIs, we produce each hyperrectangle using an iterator that computes the next

(𝑟1 × · · · × 𝑟𝑑 , 𝑄∗) pair on-the-fly.

4.2 Index-based Access to Regions
For each partition, we build a spatial index I𝑝 on a set of attributes 𝐴(I𝑝 ). Each time the iterator

produces a hyperrectangle with a non-empty query-set 𝑄∗, we fetch the corresponding tuples by

issuing a range query to I𝑝 . The query collects the tuples of interest and annotates them with

the already computed 𝑄∗, so they can be processed in Data-Query model by subsequent shared

operators.
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Fig. 4. Trie-based grid index

Our method is modular and does not stand for a specific type of spatial index. It is compatible

with any technique that enables efficient multidimensional range queries, such as Ub-tree[25], k-d

tree[4], R-tree[12], Hilbert- and Z-curve [20]. The performance characteristics of the employed

technique are expected to affect the absolute cost of index access but not the overall trends.

In our implementation, we use a grid index, as the one depicted in Figure 4. We sort the tuples

based on their projection on a selected permutation of 𝐴(I𝑝 ) and organize the resulting grid in a

trie. Each level of the trie corresponds to an attribute, and each node corresponds to a distinct value

in the domain of its level’s attribute. Each level’s nodes are stored in the same array, and nodes with

the same parent are in contiguous positions and sorted among themselves; thus, a binary search

finds children nodes that fall within the range query. At the leaves of the trie, we store contiguous

sequences of tuples with the same projection. The only tuning knob for our trie implementation is

the selected permutation of 𝐴(I𝑝 ), which is chosen when building the index.

In each range query, we traverse the trie such that the prefix satisfies the range query’s predicates

on the respective dimensions. In dimensions without predicates, we assume a (−∞, +∞) range
predicate. When the traversal reaches the leaves, it retrieves the corresponding individual tuples.

Henceforth, when we mention an index probe during MSA, we refer to a range query over I𝑝 .
Optimizing for data correlations. In some cases, such as when data is correlated, range

queries contain no results. For example, if columns 𝐴 and 𝐵 are correlated through the constraint

𝐴 − 10 ≤ 𝐵 ≤ 𝐴 + 10, then ranges (𝐴, 𝐵,𝐶) ∈ [50, 70) × [0, 20) × 𝑟𝐶 are empty. To avoid redundant

index probes, we eliminate empty hyperrectangles as follows: suppose that 𝑟1, . . . , 𝑟𝑘 is the shortest

prefix of ranges that is not satisfied by any node in the 𝑘-th level. Because all suffixes 𝑟𝑘+1, . . . , 𝑟𝑑
lead to empty hyperrectangles, the traversal abandons the current range query and searches in 𝑃𝐼𝑘
for the first non-empty range 𝑟 ∗

𝑘
after 𝑟𝑘 . The 𝑟

∗
𝑘
range has the property that 𝑟1, . . . , 𝑟

∗
𝑘
is satisfied by

at least one node in the 𝑘-th level. If such a range exists, the iterator of hyperrectangles jumps to

the first region with the non-empty prefix. Otherwise, the iterator jumps to the first hyperrectangle

with prefix: 𝑟1, 𝑟2, . . . , 𝑟
∗
𝑘−1, where 𝑟

∗
𝑘−1 is the next range after 𝑟𝑘−1. This way, large numbers of

empty hyperrectangles are pruned early, significantly reducing the index probing cost.

4.3 Hybrid Execution
Probing all index attributes (i.e., F𝑝 = 𝐴(I𝑝 )) may incur a high cost, as |F𝑝 | has a multiplicative

effect on the number of hyperrectangles. For this purpose, 𝑆𝐻2𝑂 uses a hybrid MSA/post-filtering

approach: when processing a batch of queries with filters on a set of attributes 𝑈𝐹 , it uses MSA

to replace only filters on F𝑝 ⊂ 𝐴(I𝑝 ) and then uses 𝑈𝐹 − F𝑝 to post-filter the tuples that the

spatial index retrieves. Post-filtering is necessary because the query-sets after probing the index

correspond only to the filters on F𝑝 . As we will see in Section 5, the choice of the subset is based

on the attribute selection process that maximizes the benefit of eliminating filters.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Sioulas, et al.

Q1: x > 20 AND y > 50 AND y < 80 AND z > 10
Q2: x < 20 AND w > 33
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Fig. 5. 𝑆𝐻2𝑂 data-access pipeline

Post-filtering applies filters one after the other in a vectorized manner. The order in which filters

are applied is determined by the query optimizer. For each filter, we probe the filter’s predicate

index and update the query-sets of retrieved tuples accordingly. We drop the tuples with empty

query-sets and forward the remaining tuples to the next filter in the pipeline.

This way, 𝑆𝐻2𝑂 benefits from eliminating filters while keeping MSA overhead low. Figure 5

shows an example. First, we apply MSA on attributes 𝑥 and 𝑦. In the first step, we identify the data

regions that share the same query-set. Then, we fetch the corresponding tuples by probing the

spatial index for each region. Finally, we process the retrieved tuples using shared filters on the

remaining attributes 𝑧,𝑤 .

Processing the results of each hyperrectangle separately can reduce the benefit of vectorization. If

each region contains very few tuples, interpretation overhead become comparable to the one in tuple-

at-a-time execution. Post-filtering further aggravates the situation. To reduce the interpretation

overhead, 𝑆𝐻2𝑂 consolidates its results. It packs small data vectors into larger vectors whose size

exceeds a threshold. Hence, per-vector overhead is amortized across many more rows. In our

experiments, we also use consolidation for non-𝑆𝐻2𝑂 workloads to equalize downstream costs.

4.4 Supported Predicates
MSA models predicate indices as sets of (𝑟,𝑄) pairs. This representation is compact and efficient

for i) range predicates, ii) equality predicates, iii) disjunction on the same attribute/IN operator,

and iv) conjunction. However, more complex predicates can be supported using techniques such as

the feature vector from [34].

5 SELECTING PROBING ATTRIBUTES
MSA substitutes the shared full scan and part of the shared filters with a single query-set computa-

tion and index lookup for each hyperrectangular region. However, an increase in the number of

either the probing attributes or of the ranges in the corresponding predicate indices has a multi-

plicative effect on the number of the resulting hyperrectangles. Hence, there are cases where it is

beneficial to probe only a selected subset of the spatial index’s attributes. Adding more attributes

to this subset would increase overhead more than it would save cost. This way, we reduce: i) the

number of hyperrectangles, ii) the cost of multidimensional index lookups, and iii) the hyperrectan-

gle overheads per tuple. Nevertheless, identifying the optimal probing attributes is still a problem.

Ideally, the chosen subset of attributes hits a sweet spot between the cost of probing the spatial

index and the cost of the post-filtering.
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The attribute selection mechanism is triggered each time a table partition access starts and

consists of two parts: i) an analytical cost model that estimates the cost of MSA and shared filters

for a given set of probe attributes for a specific partition and ii) an optimization algorithm that,

given the cost model, finds the optimal subset.

5.1 Cost Model
The proposed cost model considers several factors, such as: what index is available, which attributes

have filters in the workload, how many query-set ranges exist in each attribute’s PI, what is the

data distribution, and how many tuples are retrieved with each index access. Based on the queries

at hand, our cost model partitions filter attributes in two sets: i) a subset to use for MSA and ii) a

subset to use for post-filtering. Each of the subsets can be empty.

Our analytical model is easy to understand and tune using regression. It consists of two compo-

nents: the spatial index access cost (𝐼𝐶) and the shared filter cost (𝐹𝐶). While we have motivated the

general case, where a set of filter attributes is used for probing and the remaining for post-filtering,

our model also inherently covers the trivial cases: i) use MSA for all available attributes, or ii) avoid

using MSA and do a full-scan instead.

5.1.1 Index Cost. The Index Cost (𝐼𝐶I
) represents the cost of MSA when the index I is used.

Given i) a data partition of 𝑛 tuples, ii) a set of filter attributes F, which are used to probe the index,

iii) a set of predicate indices on F: PI = {𝑃𝐼1, . . . , 𝑃𝐼 |F | }, and iv) a vector of data-partition statistics

D, 𝐼𝐶I
can be expressed as:

𝐼𝐶I (𝑛, F,PI,D) = (
∏
𝑓 ∈F

𝑁 (𝑃𝐼𝑓 )) ∗𝐶𝑜𝑠𝑡𝐻 (𝑛, F,PI,D)

With

∏
𝑓 ∈F 𝑁 (𝑃𝐼𝑓 ), we denote the number of non-empty hyperrectangles with non-empty

query-sets that MSA creates. To estimate the number of hyperrectangles, we assume the worst case

in which all hyperrectangles are non-empty and have non-empty query-sets hence MSA cannot

exploit data correlations to skip hyperrectangles.

∏
𝑓 ∈F 𝑁 (𝑃𝐼𝑓 ) rapidly increases with more or

larger predicate indices, and thus choosing strategically the set F is critical. Note also that the

number of accessed ranges in a predicate index 𝑁 (𝑃𝐼𝑓 ) is directly affected by the workload access

patterns. Intuitively, the more correlated the queries, the smaller 𝑁 (𝑃𝐼𝑓 ) would be. Thus, our cost

model also captures latent workload correlations.

The second term, 𝐶𝑜𝑠𝑡𝐻 (𝑛, F,PI,D), denotes the cost each hyperrectangle incurs. 𝐶𝑜𝑠𝑡𝐻 is pro-

portional to three quantities: i) the cost 𝑄𝐶 of query-set operations for computing the query-set

𝑄∗, that all tuples of the hyperrectangle share, ii) the lookup cost 𝑆𝐼𝐶 on the spatial index, and iii)

the cost 𝑉𝐶 that the resulting tuples will incur on post-filtering. The latter is practically how many

vectors we will need to post-filter. This can be expressed as:

𝐶𝑜𝑠𝑡𝐻 (𝑛, F,PI,D) = 𝑐𝑞 ∗𝑄𝐶 + 𝑐𝑠 ∗ 𝑆𝐼𝐶 + 𝑐𝑣 ∗𝑉𝐶
where 𝑐𝑞, 𝑐𝑠 , 𝑐𝑣 are constants. The value of these constants reflects latent variables such as the

underlying hardware, the query-set implementation, the spatial index implementation, etc., and

thus should be tuned to match the specific deployment at hand. We tune the parameters by running

𝑆𝐻2𝑂 for generated sets of data and queries and then fitting the cost model results to the measured

response time using least-squares.

Now, we further discuss and expand the𝑄𝐶, 𝑆𝐼𝐶 , and𝑉𝐶 quantities. The query-cost𝑄𝐶 depends

on the implementation of query-set operations. Makreshanski et al. discuss the trade-offs of different

implementations [23]. Our implementation uses bitsets, and in that case, 𝑄𝐶 = |B|, where |B| is
the size of the submitted query batch.
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The lookup cost 𝑆𝐼𝐶 is a function of the available predicate indices and data distribution (𝑆𝐼𝐶 =

𝑆𝐼𝐶 (PI,D)). The exact formula of 𝑆𝐼𝐶 depends on the spatial index implementation. In our case,

where a grid index is used, we observe that the cost depends on the number of visited nodes at

each level of the trie:

𝑆𝐼𝐶 (PI,D) =
𝑑𝑚𝑎𝑥∑︁
𝑑=1

𝑑∏
𝑖=1

𝑠𝑒𝑙 (𝑃𝐼I𝑖 ) ∗ D(I𝑖 )

where 𝑑𝑚𝑎𝑥 the dimensionality of the spatial index, 𝑠𝑒𝑙 (𝑃𝐼I𝑖 ) is the average selectivity across the

accessed ranges of predicate index I𝑖 , and D(I𝑖 ) denotes the distinct values in attribute I𝑖 . I𝑖 maps

each index dimension to the corresponding filter attribute. The formula assumes that the attributes

follow independent distributions and that the number of nodes is lower than the number of tuples:

it estimates that for each node of level 𝑖 − 1, index traversal accesses 𝑠𝑒𝑙 (𝑃𝐼I𝑖 ) ∗ D(I𝑖 ) nodes in
level 𝑖 . Thus, the number of visited nodes per level is increased multiplicatively. The assumption

of independence is commonly used in query optimizers [21]. Estimating selectivity, especially for

predicates across multiple attributes, is an orthogonal and active research area [7, 38].

Finally, the 𝑉𝐶 cost represents the number of vectors retrieved with each index lookup. We

approximate this cost by assuming that all hyperrectangles contain the same number of tuples. The

formula used is:

𝑉𝐶 = ⌈ 𝑛

𝑣𝑠 ∗∏𝑓 ∈F 𝑁 (𝑃𝐼𝑓 )
⌉

where 𝑣𝑠 is the vector size used during processing. The ceiling shows that even when fewer than

𝑣𝑠 tuples are retrieved from a hyperrectangle, we have to “pay” for the whole vector.

Putting it all together:

𝐼𝐶I (𝑛, F,PI,D) =
∏
𝑓 ∈F

𝑁 (𝑃𝐼𝑓 ) ∗ (𝑐𝑞 ∗ |B|+

𝑐𝑠 ∗
𝑑𝑚𝑎𝑥∑︁
𝑑=1

𝑑∏
𝑖=1

𝑠𝑒𝑙 (𝑃𝐼I𝑖 ) ∗ D(I𝑖 ) + 𝑐𝑣 ∗ ⌈ 𝑛

𝑣𝑠 ∗∏𝑓 ∈𝐹 𝑁 (𝑃𝐼𝑓 )
⌉)

5.1.2 Filter Cost. The filter cost models the cost of shared filters using the Data-Query model.

For each tuple, if there are 𝑚 predicate indices available, the tuple’s query-set is produced as

𝑝𝑟𝑜𝑏𝑒 (𝑃𝐼1) ∩ · · · ∩ 𝑝𝑟𝑜𝑏𝑒 (𝑃𝐼𝑚). Thus, the cost comprises the predicate index probe and the cost of

query-set operations. Again, the cost of query-set operations is proportional to the query batch

size |B|.
Regarding the probing cost, our analysis indicates that it mostly depends on data locality. In

our implementation, predicate indices take the form of binary trees. If consecutive tuples follow

the same path in the predicate index’s binary search, the branch prediction mechanism of modern

processors significantly accelerates probing. Otherwise, if subsequent tuples follow different paths,

performance degrades. To quantify this effect, for each filtering attribute 𝑓 , we define a locality

indicator 𝐿𝑓 that shows the expected number of consecutive tuples that follow the same path

when probing the corresponding predicate index. Then, using regression, we train a monotonically

increasing decay function that maps the lack of locality to a factor of performance degradation:

𝑙𝑜𝑐 (𝐿𝑓 ) → [1,∞]. In practice, we have observed that 𝑙𝑜𝑐 (𝐿𝑓 ) ∈ [1, 2.5].
In contrast to the spatial index cost, in shared filters, the number of ranges in the predicate index

is less important. Finding the correct ranges, here, depends on a binary search and thus the cost is

increasing logarithmically to the number of ranges. Summing up, the cost of shared filters is:
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Algorithm 1: Enumerate Candidate Dimension-Sets

input :Tuple (𝑛,𝑈𝐹 , 𝑃𝐼, 𝐷, 𝐿)
1 𝑙𝑒𝑣𝑒𝑙 = {∅} ; 𝑏𝑒𝑠𝑡_𝑠𝑒𝑡 = ∅ ; 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 = 𝑆𝐶 (𝑛,𝑈𝐹 , 𝐿) ;
2 while 𝑙𝑒𝑣𝑒𝑙 .𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 () do
3 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 = ∅ ;

4 for 𝐹 ∈ 𝑙𝑒𝑣𝑒𝑙 do
5 for 𝑓 ∈ 𝑈𝐹 − 𝐹 do
6 𝐼𝐶𝑜𝑙𝑑 = 𝐼𝐶𝐼 (𝑛, 𝐹, 𝑃𝐼, 𝐷); 𝑆𝐶𝑜𝑙𝑑 = 𝑆𝐶 (𝑛,𝑈𝐹 − 𝐹, 𝐿) 𝐼𝐶𝑛𝑒𝑤 = 𝐼𝐶𝐼 (𝑛, 𝐹 ∪ {𝑓 }, 𝑃𝐼, 𝐷) ;
7 𝑆𝐶𝑛𝑒𝑤 = 𝑆𝐶 (𝑛,𝑈𝐹 − 𝐹 − {𝑓 }, 𝐿) ;
8 if 𝐼𝐶𝑛𝑒𝑤 − 𝐼𝐶𝑜𝑙𝑑 < 𝑆𝐶𝑜𝑙𝑑 − 𝑆𝐶𝑛𝑒𝑤 then
9 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 = 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 ∪ {𝐹 ∪ {𝑓 }} ;

10 if 𝑇𝐶𝑛𝑒𝑤 < 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 then
11 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 = 𝑇𝐶𝑛𝑒𝑤 ; 𝑏𝑒𝑠𝑡_𝑠𝑒𝑡 = 𝐹 ∪ {𝑓 } ;
12 𝑙𝑒𝑣𝑒𝑙 = 𝑛𝑒𝑥𝑡_𝑙𝑒𝑣𝑒𝑙 ;

13 return 𝑏𝑒𝑠𝑡_𝑠𝑒𝑡 ;

𝐹𝐶 (𝑛, F, L) = 𝑛 ∗ 𝑐 𝑓 ∗
∑︁
𝑓 ∈F

|B| ∗ 𝑙𝑜𝑐 (𝐿𝑓 )

where L = [𝐿1, . . . , 𝐿 |F | ] is a vector with the locality indicators for each filter attribute and 𝑐 𝑓 is

a constant.

5.1.3 Total Cost. Overall, the cost of 𝑆𝐻2𝑂 when probing the spatial index on attributes F is:

𝑇𝐶 (𝑛, F,PI,D, L,I) = 𝐼𝐶I (𝑛, F,PI,D) + 𝐹𝐶 (𝑛,UF − F, L)
where UF is the set of all filter columns.

5.2 Enumerating Candidate Attribute Sets
The cost model can estimate whether a set of probed attributes is preferable to another. 𝑆𝐻2𝑂 takes

advantage of these estimates to identify the attributes that minimize the total data access cost

for each partition: It enumerates candidate attribute sets, and for each candidate, it computes the

corresponding cost model’s estimate. The set that yields the lowest cost is finally selected.

However, candidate selections are, in the worst case, exponential to the number of attributes.

To explore all candidates, we traverse the lattice of attribute-sets in a bottom-up way, which

takes 𝑂 ( |𝐹 | × 2
|𝐹 | ) in the worst-case (without pruning). To render enumeration efficient, we

build Algorithm 1 which prunes parts of the space by using Observation 5.2 (line 8). The process

terminates when no more candidates are available.

Observation. If adding an extra attribute to a candidate-set increases 𝐼𝐶 more than it decreases
𝐹𝐶 , then the resulting candidate-set and its super-sets can be safely pruned.

6 PARTITION SPECIALIZATION
Thus far, we have described how 𝑆𝐻2𝑂 processes data-access pipelines in a per-partition fashion.

Here, we show how it exploits local patterns in the query predicates, and hence the need for

partitioning.

In cases where there are correlations between the workload’s predicates, directly applying 𝑆𝐻2𝑂

on the entire dataset processes an unnecessarily large number of hyperrectangles. Consider the
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Fig. 6. Applying 𝑆𝐻2𝑂 at partition-granularity

example of Figure 6. Thework-sharing database processes a batch of queries with filters on attributes

𝐴, 𝐵,𝐶 . Computing MSA’s hyperrectangles for the entire dataset results in |𝑃𝐼𝐴 | ∗ |𝑃𝐼𝐵 | ∗ |𝑃𝐼𝐶 | = 8

probes. However, consider the case where the data is partitioned on the predicate 𝐴 > 40. In each

partition, we need to consider only predicates from queries that intersect with the partition. Then,

𝑆𝐻2𝑂 probes |𝑃𝐼𝐵 | = 2 hyperrectangles in the first partition (𝐴 ≤ 40) and |𝑃𝐼𝐶 | = 2 in the second

partition (𝐴 > 40). Moreover, the partitioned case requires indices with fewer dimensions which

translates to decreased probing cost.

To exploit local patterns within relevant partitions and reduce both the number of hyperrectangles

and the dimensionality of indices, 𝑆𝐻2𝑂 adapts access to each partition. It identifies which predicates

are relevant in each partition, using a variant of data skipping, and plans multidimensional shared

accesses independently. First, 𝑆𝐻2𝑂 identifies the set of queries that process each partition. A

query processes a partition if the partition overlaps with the query’s predicates. To compute

the query-set of each partition, we use data skipping based on zone maps [11]. 𝑆𝐻2𝑂 finds the

queries that intersect with the zonemap’s min-max ranges – by exploiting predicate indices – and

computes their union. If the query-set is empty, 𝑆𝐻2𝑂 completely skips the partition. Next, 𝑆𝐻2𝑂

optimizes multidimensional shared access for each partition’s queries. Filters that do not belong

to the partition’s query-set or statically evaluate to TRUE are excluded from the PI ranges and the

attribute selection. Hence, 𝑆𝐻2𝑂 produces drastically fewer hyperrectangles.

7 SH2O-AWARE DATA ORGANIZATION
The effectiveness of 𝑆𝐻2𝑂 depends on the constructed partitions and indices. To reduce data-

access and filtering costs, 𝑆𝐻2𝑂 requires i) spatial indices that can replace shared filters in a query

batch arriving at runtime, thus enabling efficient access, and ii) partitions that exploit predicate

correlations. In this section, we formulate and address the problem of partitioning/indexing the

data such that we minimize 𝑆𝐻2𝑂 ’s cost for a set of target batches.

We partition/index the data in an offline manner. As long as predicate patterns recur (i.e.,

predicates on the same attributes and correlations between predicates) the partition/index-building

cost is an investment that is amortized with time. In this work, we do not elaborate on the predicate

monitoring process or on the details of how often partitions should be updated, but we theoretically

formulate and solve the joint partition-index selection problem for 𝑆𝐻2𝑂 . Continuously tuning the

physical design is a well-known problem which is orthogonal to ours [2]. Here, we assume that

the set of (one or more) batches to optimize for is known in advance, and we build partitions and

indices once in the beginning.
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In the literature, there are several data-layout optimization techniques that partition a multi-

dimensional dataset in a way that captures query correlations and favors data skipping (e.g., [37]).

However, existing partitioning approaches: i) do not account for shared access across a batch of

queries and ii) are index-oblivious. Here, we address both deficiencies at the same time. More

specifically, we take advantage of emerging access patterns in the workload and partition the data

space into a set of hyperrectangles. For each of these hyperrectangles, partition-index selection

uses the cost model of Section 5.1 to choose an index that best fits the specific subspace. The goal is

to minimize the aggregate data access time across all partitions. At runtime, 𝑆𝐻2𝑂 processes each

resulting partition independently. Formally, we define the Index-Aware Partitioning for Shared Access
(IPSA) problem:

Problem (IPSA). — Given𝑤 query batches with predicate index sets 𝑃𝐼 1, 𝑃𝐼 2, . . . , 𝑃𝐼𝑤 , find a set of
partition-index pairs

P = {(𝑆1, 𝐼1), . . . , (𝑆𝑚, 𝐼𝑚)}
such that

min

∑︁
(𝑆𝑖 ,𝐼𝑖 ) ∈P

𝑤∑︁
𝑗=1

min

F
𝑇𝐶 ( |𝑆𝑖 |, F, PIj |𝑆𝑖 , 𝑆𝑖 , L, 𝐼𝑖 )

with the constraint that 𝑆1, . . . , 𝑆𝑚 are hyperrectangles 1.
We observe that any partitioning can be generated by applying a series of recursive cuts, where

each cut corresponds to a predicate (e.g., Figure 6). The recursion starts by taking as input the entire

dataset. Then, at each step, the current partition is either kept intact, the optimal index is selected

and the partition-index pair is returned as part of the solution, or is bi-partitioned by a new cut. In

the latter case, the two resulting partitions are further processed recursively. This structure enables

a Dynamic Programming (DP) formulation. Let us denote the optimal data access cost for partition

𝑆 as

𝑂𝐶 (𝑆) = min

I

𝑤∑︁
𝑗=1

min

F
𝑇𝐶 ( |𝑆 |, F,PIj |𝑆, 𝑆, L, 𝐼 )

Moreover, given a cut 𝑐 , we use 𝑉𝑐 (𝑆) to denote the subspace of 𝑆 that satisfies 𝑐 . Then DP is

expressed as: {
𝑃 (𝑆) =𝑚𝑖𝑛{𝑂𝐶 (𝑆),𝑚𝑖𝑛𝑐 {𝑃 (𝑉𝑐 (𝑆)) + 𝑃 (𝑆 −𝑉𝑐 (𝑆))}}
𝑃 (𝑆) = 𝑂𝐶 (𝑆) , if no other cut can be applied

7.1 Iterative Partitioning
Solving IPSA using DP is prohibitive as it requires tabulating and estimating access costs for all the

possible subspaces that the filter attributes of the batches define. This number is expected to be

very high and much larger than the number of hyperrectangles that the predicate indices define.

To efficiently approximate the optimal solution, we use an iterative algorithm that is inspired by

Iterative Dynamic Programming [19]. The algorithm works in iterations and starts from a single

partition that contains all the data. At each iteration, it chooses a partition and finds the optimal

sequence of 𝑘 recursive cuts (Algorithm 2, line 13) that minimize the total cost across all new

subpartitions. At the same time, it also selects the optimal index for all the partitions that these cuts

produce (line 15). If the cost reduction, after making the 𝑘 cuts, is more than a relative threshold 𝑡%

1
The notation PI |𝑆𝑖 signifies the subset of each predicate index that is within the boundaries that define 𝑆𝑖
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Algorithm 2: Index-Aware Partitioning for Shared Access

1 Function MAKE_PARTITIONS(𝑛,𝑈𝐹 , 𝑃𝐼, 𝐷, 𝑘, 𝑡 ) :
2 𝑜𝑢𝑡𝑝𝑢𝑡 = ∅; 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 = 𝑛𝑒𝑤𝑄𝑢𝑒𝑢𝑒 () ;
3 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.𝑝𝑢𝑠ℎ(𝐷) ;
4 while 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 () do
5 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.𝑝𝑜𝑝 ();
6 𝑘𝑐𝑢𝑡𝑠 = 𝐵𝐸𝑆𝑇_𝐾𝐶𝑈𝑇𝑆 () ;
7 if 𝑘𝑐𝑢𝑡𝑠.𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 >= 𝑡 ∗ 𝑡𝑎𝑟𝑔𝑒𝑡 .𝑐𝑜𝑠𝑡 then
8 𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑑𝑑 (𝑡𝑎𝑟𝑔𝑒𝑡) ;
9 else
10 for 𝑝 ∈ 𝑘𝑐𝑢𝑡𝑠.𝑟𝑒𝑠𝑢𝑙𝑡𝑠 do
11 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠.𝑝𝑢𝑠ℎ(𝑝) ;
12 return output ;

13 Function BEST_KCUTS(𝑛,𝑈𝐹 , 𝑃𝐼, 𝐷, 𝑘) :
14 if 𝑘 == 0 then
15 𝑟𝑒𝑡 .𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 = 𝐶𝐻𝑂𝑂𝑆𝐸_𝐼𝑁𝐷𝐸𝑋 (𝑛,𝑈𝐹 , 𝑃𝐼, 𝐷) ;
16 𝑟𝑒𝑡 .𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = {𝐷}; return 𝑟𝑒𝑡 ;
17 𝑐𝑢𝑡𝑠_𝑖𝑛_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 = {𝑓 ∈ 𝑈𝐹 |𝑓 𝑐𝑢𝑡𝑠 𝐷} ;
18 for 𝑐𝑢𝑡 ∈ 𝑐𝑢𝑡𝑠_𝑖𝑛_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 do
19 (𝑙ℎ𝑠, 𝑟ℎ𝑠) = 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑛, 𝐷) ;
20 for 𝑖 = 0 𝑡𝑜 𝑘 do
21 𝑗 = 𝑘 − 𝑖 − 1 ;

22 𝑟𝑒𝑡1 = 𝐵𝐸𝑆𝑇_𝐾𝐶𝑈𝑇𝑆 (𝑙ℎ𝑠.𝑛,𝑈𝐹 , 𝑃𝐼, 𝑙ℎ𝑠.𝐷, 𝑖) ;
23 𝑟𝑒𝑡2 = 𝐵𝐸𝑆𝑇_𝐾𝐶𝑈𝑇𝑆 (𝑟ℎ𝑠.𝑛,𝑈𝐹 , 𝑃𝐼, 𝑟ℎ𝑠.𝐷, 𝑗) ;
24 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 = 𝑟𝑒𝑡1.𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 + 𝑟𝑒𝑡2.𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 ;
25 if 𝑟𝑒𝑡 .𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 > 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 then
26 𝑟𝑒𝑡 .𝑏𝑒𝑠𝑡𝐶𝑜𝑠𝑡 = 𝑡𝑜𝑡𝑎𝑙_𝑐𝑜𝑠𝑡 ;

27 𝑟𝑒𝑡 .𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑟𝑒𝑡1.𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ∪ 𝑟𝑒𝑡2.𝑟𝑒𝑠𝑢𝑙𝑡𝑠 ;
28 return 𝑟𝑒𝑡 ;

(line 7), the cuts are actuated and the new partitions become candidates for the next iteration (line

11). The iterations stop when 𝑘 cuts cannot significantly reduce the cost of any of the partitions. The

algorithm’s behavior is tunable based on the value of 𝑘 . For small values of 𝑘 , the algorithm is fast

but can only discover simple correlations. For larger values of 𝑘 , the algorithm is more expensive

but can discover more complex correlations.

The cuts we select are always filter constants that appear in at least one batch of the target

workload. The idea is that if a cut does not correspond to a filter, then aligning it to an adjacent

filter would further reduce the cost. Thus, cuts derived from the workload’s filters reduce the search

space without jeopardizing the quality of the solution.

7.2 Index Selection
The last component is to select the optimal index for processing the target workload. Index selection

i) estimates the optimal data access cost 𝑂𝐶 (𝑆) of accessing a partition as is, without further

subpartitioning, and thus is critical for IPSA and ii) finds which index minimizes the sum of 𝑆𝐻2𝑂

costs for a sequence of batches. For each batch, the incurred cost is the cost of the access strategy

for the optimal attribute selection. The optimal set differs for each candidate index.
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We use an algorithm that enumerates and evaluates all possible indices for a set of candidate

index attributes. The candidate index attributes are the filter attributes in the given batches. For the

case of the trie, the possible indices are the permutations of the subsets of candidate attributes. For

each candidate index, the index selection algorithm runs attribute selection for each target batch in

a what-if manner to estimate the sum of costs. In the end, it chooses to build the index that yields

the lowest cost estimate. We omit the algorithm for brevity.

In the general case, the number of possible indices is exponential to the number of attributes.

However, in practice, we see that 𝑆𝐻2𝑂 maximizes cost savings with a relatively small number of

indexed attributes (up to 10). In that case, this approach is sufficient. However, scaling to a higher

number of attributes, or adding more types of indices, may require heuristics.

8 IMPLEMENTATION
Our implementation is based on RouLette [33], an in-memory state-of-the-art work-sharing data-

base. Our implementation for 𝑆𝐻2𝑂 modifies the ingestion and shared filter components: When

scheduling a scan, the attribute selection process of Section 5 estimates the best subset of columns

on which to use MSA. If the selected subset is empty, the original code path is used. Otherwise,

we modify RouLette to use MSA for the best subset and exclude the corresponding columns from

shared filters. After filtering, RouLette consolidates results.

MSA can retrieve more than a vector’s worth of elements with each lookup. Then, we affinitize

all the rows contained in the specific hyperrectangle to the worker performing lookup. The worker

caches the lookup results, and in subsequent calls to ingestion, it extracts a vector of tuples directly

from the cache. When all cached results are returned, the worker moves to the next hyperrectangle.

By doing so, eachworker processes its own exclusively-owned hyperrectangles, and synchronization

overheads are reduced.

By default, Roulette uses single-partition tables. To enable the partitioning of Section 7, wemodify

ingestion. To minimize synchronization, initially, each worker is assigned a different partition. Once

a worker finishes processing a partition, it requests another one. If there are no more unassigned

partitions, the worker is attached to the same partition that has been assigned to another worker.

Workers processing the same partition pull hyperrectangles from the same iterator.

RouLette, and by extension 𝑆𝐻2𝑂 , processes memory-resident data. Thus, the current imple-

mentation is optimized for in-memory processing. However, the approach is also beneficial for

disk-based systems: First, selective access can significantly reduce I/O. Second, with modern SSDs

achieving several GB/s in read bandwidth, probing a sequence of predicate indices is still too

expensive to be masked by I/O. Still, a disk-based implementation requires extra optimizations: i) to

avoid spreading range queries across several disk pages, data needs to be organized on disk using

space-filling curves, and ii) similar to cooperative scans [40], to maximize bandwidth, we need to

implement I/O scheduling. An extension for disk-based systems is outside the scope of this work.

9 EXPERIMENTAL EVALUATION
Our experiments evaluate 𝑆𝐻2𝑂 across three axes:

i) We first analyze the cost of shared scans and filters and show how multidimensional shared

access can eliminate it.

ii) We discuss the introduced overhead by the number of hyperrectangles and demonstrate the

merits of attribute selection.

iii) We show that multidimensional partitioning significantly reduces the data access cost for

different workload families.

Access Methods. We evaluate the following methods: i) Scan: Shared full scan and filtering

using the Data-Query model, ii)MSA: Access data by exclusively using MSA, iii) SH2O: This is our
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Fig. 7. SSBM and TPC-H benchmarks

hybrid approach where we first use MSA and then apply shared post-filtering, iv) Qd-tree [37]:
This is a state-of-the-art data skipping approach that partitions the data based on the workload,

in a way that maximizes partition pruning, v) Zonemaps: This is standard data skipping over

horizontal partitioning. When we assess this technique, the dataset is always sorted on the filtering

attribute. We implement all aforementioned methods on Roulette.

We also compare against well-known databases: MonetDB [14], PostgreSQL, and DuckDB
[29] that we use as baselines for query-at-a-time execution over indices. DuckDB and MonetDB are

optimized for efficient columnar data access, and support the ART andORDERED index, respectively.

Finally, PostgreSQL has a mature B+-tree design and supports multidimensional indexing with

GiST. We configure all databases to keep data and execution in-memory. Note that, as our workload

is analytical (i.e., queries process hundreds of thousands tuples), the bottleneck is data access and

processing, not the index traversal itself. Thus, we do not expect alternative indexing techniques to

affect the showcased trends and conclusions.

Data &Workload. We run both macro- andmicro-benchmarks. First, we show how the proposed

technique can accelerate analytical applications such as the widely used SSBM [26] and TPC-H

benchmarks with scale factor 10. The order of the tuples is randomized. Then, we perform an

extensive sensitivity analysis. More specifically, we investigate the effect of: i) concurrency (query

batch size), ii) selectivity, iii) the number of filtering attributes, iv) data correlations, v) workload

shift, vi) existing pre-computed aggregates, vii) the size of the resulting predicate indices, and viii)

the predicate correlations. To allow controlling the experiment variables, for the purpose of the

micro-benchmarks, we generate synthetic data. We use a single table of 256𝑀 rows and 4-byte

integers. The number of columns and their distribution is presented in each experiment.

Hardware. We run the evaluation on a two-socket machine with Intel Xeon Gold 5118 CPU

with 12 cores per socket, running at 2.30 GHz, and 378 GB of main-memory. We isolate execution

on one NUMA-node and run all our experiments with 12 threads. The threads and memory are

affinitized to the used NUMA node. We run all the experiments after the data has been loaded

in-memory in columnar format, and report the average of 3 runs.

9.1 End-to-end Performance for Analytics
We evaluate the effect of SH2O on analytical queries using the Star Schema Benchmark (SSBM) [26]

and TPC-H. Both SSBM and TPC-H measure the performance of databases for data warehousing

applications. SSBM defines four select-project-join-aggregate query templates over a star schema.

For each template, there are multiple variants with different selectivity. In total, SSBM has thirteen

queries. TPC-H defines twenty-two query templates that cover more advanced SQL queries.

We compare SH2O against all other considered methods. We compare total response time for

batches that contain the full SSBM and the full TPC-H as well as batches that consist of SSBM Q1.1,
Q1.2, and Q1.3 (SSBM 1.x), which are the only SSBM queries that compute filters directly on the

fact table, and eight instances of TPC-H Q6 with different predicates (TPCHQ6X ). TPC-H represents

an adversarial example with limited sharing, and TPCHQ6X simulates dashboard queries with the
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Fig. 8. Effect of joint selectivity on data-access.

same template and different parameters. SH2O uses only one partition and chooses indices that use

all the filter attributes on each fact table. The trie for TPC-H takes 8.7 sec to build and requires

216MB, whereas the trie for SSBM takes 2.2 sec to build and requires 53kB. The databases do not

use indices in this experiment, Qd-tree uses the greedy algorithm from [37], and Zonemap splits

the data, which uses the same ordering as the trie, into 1000 horizontal partitions.

Figure 7a shows the results of the end-to-end comparison in logarithmic scale. Scan performs

better than query-at-a-time execution (both in Roulette and in databases), and SH2O always

performs better than all competing methods. For SSBM 1.x, which aggressively filters the fact table,

eliminating the shared filters makes a substantial difference and SH2O results in 12.9× over Scan.

For the full SSBM, which accesses all rows in the fact table, SH2O still achieves a moderate 1.6×.
Similarly, for the full TPC-H, the achieved speedup is 1.18×, while for TPCHQ6X it is 3×. To factor

out join costs, for the full TPC-H case, we also compare the time that Scan and SH2O spend in data

access and we find SH2O being 2.69× faster.

Scalability. We also compare Scan and SH2O for scale factors 50 and 100 and measure the

response time, and the indexing-optimization times that are required by SH2O. Figure 7b shows

results that are qualitatively similar to SF 10. For the data-intensive benchmarks the gains range

from 3× to 11×. Figure 7c shows that the index-selection time is small and invariant to the scale

factor, whereas indexing is proportional to the scale factor. Finally, as it only depends on the distinct

values, which are the same, the index size is also the same across scale factors.

Takeaway: SH2O reduces response times even for complex queries. The benefit of SH2O is

maximum for queries that filter large tables. However, by eliminating filter overhead, it still reduces

response times even when almost all data is accessed.

Discussion: SH2O accelerates the scan & filtering phase. In join-heavy workloads, the join costs

mask SH2O’s benefit in data access. At worst, SH2O’s benefit is marginal. Also, SH2O assumes use of

work sharing and improves over shared scans. However, there exist workloads where work sharing

and/or shared scans are suboptimal, such as point queries, and non-concurrent or non-overlapping

queries. These are adversarial cases for SH2O as well.

9.2 Efficient Multidimensional Data Access
In this section, we show the costs from which existing techniques suffer when we vary i) the joint
selectivity, ii) the size and iii) the filtering attributes of a query batch, and how MSA eliminates

these costs. Moreover, we show how MSA handles the high number of hyperrectangles that data

correlations produce.

Joint selectivity. We compare Scan, MSA, Qd-tree, Zonemaps, and the baseline databases

(MonetDB, PostgreSQL, DuckDB), to analyze the behavior of shared scans and index-based methods

under varying workload parameters. In this experiment, SH2O only uses MSA. We use a table with

two uniformly distributed columns. We index the first column, whose domain is [0, 100𝑘). Building
the trie takes 7.98 𝑠𝑒𝑐 and requires 781kB. MonetDB uses the ordered index, PostgreSQL uses

B-trees, and DuckDB always uses full scans even though we have built an ART index. All queries

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:20 Sioulas, et al.

0.001

0.01

0.1

1

10

100

1000

1 8 64 512

Ba
tc

h 
Re

sp
on

se
 T

im
e 

(s
ec

)

Number of Queries

Scan MSA Qd-tree Zonemap PostgreSQL DuckDB

(a) concurrency

0

2

4

6

8

10

5 6 7 8 9 10

Ba
tc

h 
Re

sp
on

se
 T

im
e 

(s
ec

)

#Dimensions

NoIndex-NoAggr NoIndex-Aggr SH2O-NoAggr SH2O-Aggr

(b) precomputed aggregates

0
1
2
3
4
5
6
7
8

0 0.5 0.8 0.9

Ba
tc

h 
Re

sp
on

se
 T

im
e(

se
c)

Correlation

SH2O-BASELINE SH2O-OPT

(c) data correlations

Fig. 9. Effect of concurrency, precomputed aggregates and data correlations on response time.

filter the first column. For all the experiments of the section, we use batches of 512 filter-aggregate

queries. The filter is a range on the first column.

Figure 8 shows the impact of the amount of common accesses for varying query selectivities

(0.1%, 1%, 10%, and 50%). We control the maximum joint selectivity, that is the fraction of the table’s

rows that can be accessed by one or more queries. When maximum joint selectivity is 1%, all queries

of the batch are generated such that their predicates request a subset of the selected fraction. When

maximum joint selectivity is 100%, each query can access any possible range. To demonstrate the

robustness of MSA to workload shifts compared to partition-based data-skipping approaches, the

predicates of the query workload are shifted by 0.1% compared to the tuning workload of the

Qd-tree. In the absense of workload shift, Qd-tree has identical performance with MSA.

The response time of all databases depends exclusively on the performance of individual queries

and is unaffected from changes to the maximum joint selectivity. However, for an individual

selectivity of 0.1% and a joint selectivity 100%, PostgreSQL is competitive to Qd-tree and Zonemaps.

Scan always processes the entire dataset. Thus, redundant filtering overheads are introduced and

latency is high even when all queries access the same 0.2% of the data. Decreasing the maximum

joint selectivity only changes the cost of aggregation at the end, and moderately affects the result.

By contrast, MSA significantly benefits from low maximum joint selectivity, and gradually pays

the cost of spreading accesses across the table. When the workload contains queries with 0.1%

selectivity and accesses less than 2% of the table, MSA gives a speedup of more than an order of

magnitude compared to Scan. Even in the worst case, where accesses are completely uncorrelated,

it achieves a lower response time by 45% as i) it still accesses fewer data, ii) incurs lower filtering

overheads, and iii) achieves higher locality in the router before aggregations.

Data-skipping approaches also benefit from low joint-selectivity. However, as data accesses

spread with increasing joint selectivity, they suffer from overfetching and filtering costs. Thus,

MSA achieves up to 3.68× over Qd-tree and 6.66× over Zonemaps.

We also observe that MSA outperforms all databases regardless of individual selectivity. For 0.1%

selectivity, it is 10× faster on average than PostreSQL, which is the fastest DB alternative (as it uses

B-trees), and for 50% selectivity it is 7.7× faster than DuckDB.

Takeaway: Techniques that combine selective and shared access drastically improve interactivity

in workloads that span a small portion of the table. Nevertheless, MSA is superior to data-skipping

approaches, which are prone to overfetching and filtering costs.

Batch Size. Figure 9a shows the impact of concurrency on Scan, MSA, the data-skipping tech-

niques, PostgreSQL, and DuckDB by varying the query batch size. We use the same data, indices,

and workload as the scenario with 1% selectivity and 10% joint selectivity in Figure 8.

MSA exploits the fact that smaller batches effectively access a very small portion of the table. As

the batch size is increased, response time is also increased but does so sublinearly until 64 queries.

Scan starts with almost two orders of magnitude higher response time. Cost is increased along

with the number of queries due to heavier query-set operations, larger predicate indices, and more

aggregations. When the query batch size exceeds the 64 queries, query-set operations become
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Fig. 10. Effect of filter dimensions and workload shift on response time.

particularly heavy and cause a sharp latency increase for both methods. However, even for 512

queries, MSA is 7.2× faster than Scan and 1.8× faster than Qd-tree.

Takeaway: MSA gradually spreads data access across the table. It outperforms both indices and

shared scans across the whole concurrency spectrum.

SH2O over pre-aggregations. Figure 9b shows that SH2O is both complementary and essential

for minimizing response time when answering queries using pre-aggregated results. We use a table

with 100𝑀 rows and a variable number of columns (from 5 to 10). Each column has 10 distinct values.

We use 512 queries, and each filters on one of the columns. We compare four configurations: shared

scans on the original table (NoIndex-NoAggr), shared scans on a pre-aggregation on the columns

(NoIndex-Aggr), SH2O on the original data (SH2O-NoAggr), and SH2O on the pre-aggregated results

(SH2O-Aggr). SH2O indexes 5 columns. SH2O-NoAggr eliminates 5 shared filters, outperforming

NoIndex-Aggr. For both approaches, the response time is increased linearly with the number of

columns. NoIndex-Aggr is efficient when aggregating on few columns, however, the number of

resulting groups is exponential to the number of columns. Hence, for high-dimensional workloads,

the number of groups is high enough that shared filters are time-consuming. Combining the two

optimizations (SH2O-Aggr) both reduces the number of rows and reduces filtering overhead and

thus outperforms all other approaches.

Takeaway:. While preaggregation reduces data size and thus latency, it still suffers from the

data-access bottleneck. Combining it with 𝑆𝐻2𝑂 alleviates the overhead.

Data correlations. Figure 9c shows the effect of the early elimination optimization during

hyperrectangle iteration. We use a table with three columns, where the first, 𝐶1, is uniformly

distributed in [0, 1𝑘). We make the 2
𝑛𝑑

and 3
𝑟𝑑

correlated to𝐶1 by adding uniform random variables.

The range of the variables determines the correlation. Therefore, we use [−500, 500] to achieve

a correlation of 0.5, [−250, 250] for 0.8 etc. Correlation 0 means that all columns are generated

independently. Each query has a filter on one of the three columns and retrieves approximately 1%

of the rows. We build an index on the three columns, which takes 21.2 − 22.5sec.

Without the optimization of Section 4.2, MSA suffers from the high number of hyperrectangles.

The observed variance is due to differences in the trie’s structure depending on the correlation.

Enabling the optimization decreases the number of hyperrectangles and increases the benefit with

correlation. When correlation becomes 1, the optimization reduces response time by 21.2×.
Takeaway: The response time of MSA depends on the actual number of non-empty hyperrect-

angles. Eliminating them is critical when the data contains correlations.

Filter attributes.Figure 10a assesses the impact of the number of filtering attributes on a table

with 10 columns. The workload accesses the full table. To scale the number of filters without

exploding the number of resulting hyperrectangles, which we test in the next Section, we assume

that 9 columns of the table contain boolean {0, 1} values. Each query contains two filters and has

5% selectivity: i) the first filter is on the same attribute across all queries and has 10% selectivity, ii)

the second filter is on one of the boolean columns and has 50% selectivity. We vary the number of
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Fig. 11. Impact of dimension selection during probing

boolean columns used for filters and, for each run, we use an index, which covers all used columns

(first the common filter, and then the rest).

Scan shows a linear increase with the number of filters: more filters directly translate to increased

query-set operations per tuple. MSA demonstrates near-constant performance; a slight decrease

in execution time is due to better load balancing between threads. The efficiency of MSA stems

from the fact that filtering costs are not spread to the whole dataset. Instead of the expensive

query-set operations, MSA only probes and computes the corresponding query-sets for up to 10240

hyperrectangles. By amortizing the filtering overhead among all tuples of a hyperrectangle, it is

4.69× faster than Scan, despite that they both access the whole table. Finally, the indexing time is

linear to the number of columns and varies from 4.5 − 45.8sec.

Takeaway: The benefit of amortizing query-set overhead across a hyperrectangle is proportional

to the number of filter attributes.

Index Access Cost. We measure the impact of dimensionality on the efficiency of the index. We

vary the number of indexed attributes and the number of attributes we use for probing; 𝐹𝑖 signifies

that we probe 𝑖 dimensions. The dataset contains 30 distinct values. Measurements that use the

same probes attributes result in the same hyperrectangles and are thus comparable. Increasing

the number of index dimensions increases the cost exponentially. By contrast, when only a small

number of dimensions is used, index probe is in the sub-second range.

Thus, SH2O shines when the workload accesses few dimensions with relatively few distinct

values. If the data characteristics are invariant to data scale, this holds even for large data sizes

as demonstrated in Figure 7b. On the contrary, in cases where scaling the data also increases the

data-value domains and combinations, and the accessed columns, SH2O is less effective: our cost

model captures this trend and mitigates dimensionality by indexing and probing only the subset of

the filter attributes in the workload that maximizes the net gain over Scan.

Takeaway:. Probing high-dimensional indices is expensive. The cost model is critical as it averts

choosing an index or probe attributes that degrade performance.

Workload Shift. In all experiments thus far, queries target a subset of the columns that were

used to build the index. Figure 10c shows the effect of workload shifts. We build indices on columns

[0, 5] and each bar of the plot represents a batch with queries on columns [𝑖, 𝑖 + 5]. Hence, in each

step of the x-axis, we include one more non-indexed column. The takeaway here, is that there is no

cliff and performance gracefully degrades until it converges to Scan.

Takeaway:. SH2O is robust to workload shift. The performance benefit decreases proportionally

to the filter-attribute shift between the target and the runtime workload.

9.3 Scaling using Attribute Selection
Next, we demonstrate the effect of scaling the hyperrectangles and the importance of attribute

selection. As this is a latent parameter that depends on the number of filter columns and the size
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Fig. 12. Impact of partitioning for various workloads

of the corresponding predicate indices, we design two experiments: in each of these, we fix one

parameter and vary the other.

First, we fix the size of each predicate index to 10 ranges and vary the number of filtering columns.

To scale the experiment to wider tables, we use 32 uniformly distributed columns in [0, 10). Due
to the large number of attributes, we downsize the table to 100M rows. At each run, we build the

spatial index on all the columns that are used for 𝑆𝐻2𝑂 . Each query has a single filter column

and different query groups access non-overlapping columns (uncorrelated access pattern). We

compare MSA, Scan, and 𝑆𝐻2𝑂 . We also compare against the GiST index of PostgreSQL, which is

a generalized search tree. It provides support for multidimensional point of type cube. However,

𝑆𝐻2𝑂 achieves 14.1-73.4x faster response time hence we exclude GiST from the plots.

Figure 11a shows how attribute selection improves scalability. For MSA, both the number of

hyperrectangles and the response time grow exponentially with the number of filter columns. After

a crossing point, MSA becomes significantly slower than Scan, whose response time grows linearly.

Attribute selection chooses to use a subset of the filter columns such that expanding it with

one more column would make the overhead higher than the savings from skipping the scan. Our

cost model detects such cases and we observe that in this experiment, it never probes more than 6

columns (the remaining attributes are post-filtered). SH2O is more efficient than both MSA and Scan,

as it trades filters for some of the attributes for a small overhead. The gains for the eliminated filters

persist, and SH2O achieves 1.19× over Scan, even when the total number of filters is thirty-two.

Figure 11b shows the index building cost. If we index all available columns, the cost is minimal at

first, but it sharply increases as the dimensionality is increased. The space overhead is also increased,

at first exponentially until 7 attributes (85MB) and then linearly as the trie’s leaves degenerate

to single tuples. However, as our cost model is never going to probe more than 6 attributes, we

leverage this information and only index the attributes that 𝑆𝐻2𝑂 would use based on the current

batch. Thus, we guarantee that preprocessing cost is bounded and that it pays off.

Figure 11c shows how the optimization time varies with dimensionality. To vary dimensionality,

we index all used filter columns. Optimization time grows exponentially to the number of columns.

However, after 8 dimensions, our cost model detects that traversing the index deteriorates perfor-

mance, prunes high-dimensional candidates, and falls back to shared scans. This way optimization

is bounded to 100𝑢𝑠 and is applicable to real-time execution.

Takeaway: For MSA, the data-access time is determined by the number of hyperrectangles. For

a large number of hyperrectangles, SH2O outperforms both pure scan- and index-based techniques.

9.4 Decoupling Dimensions using Partitioning
We evaluate the impact of partitioning on decorrelating filter dimensions. We use three common

correlations in data analysis:

(1) 1D dependency: a query in the batch has a predicate in column𝐶𝑖 iff it also has a predicate 𝑝𝑖 in

column 𝐴. 𝑖 ∈ {1, 2, 3, 4} and each column 𝐶𝑖 has 100 distinct predicates. Before partitioning,
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we index columns 𝐴,𝐶1, . . . ,𝐶4, in this order. After partitioning, we index in each partition

only the filtered 𝐶𝑖 .

(2) 2D dependency: if a query in the batch has predicate 𝑝𝑖 in column 𝐴 and predicate 𝑞 𝑗 in

column 𝐵, it also has a predicate in column 𝐶 (𝑖+𝑗 )%𝑛+1. 𝑖, 𝑗 ∈ {1, 2, 3, 4} and each column 𝐶𝑘

has 100 distinct predicates. Before partitioning, we index columns 𝐴, 𝐵,𝐶1, . . . ,𝐶4, in this

order. After partitioning, we index in each partition only the filtered 𝐶𝑖 .

(3) Linear correlations: if a query in the batch has a predicate 𝐴 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋 𝑎𝑛𝑑 𝑌 , then it also

has predicates .𝐶𝑖 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑋 + 𝐸 𝑎𝑛𝑑 𝑌 + 𝐸 where 𝐸 ∈ [−10, 10], 𝑖 ∈ {1, . . . , 5}. There are 100
distinct predicates in column 𝐴. We index columns 𝐴, 𝐵1, . . . , 𝐵5, in this order, both before

and after partitioning.

We run the iterative algorithm to partition the data based on the filters of the batch, actuate the

partition, and finally run the batch itself. We report the response time in Figure 12a and the tuning

time in Figure 12b. Note that response time is in msec and in log-scale.

For all three workloads, the number of hyperrectangles is high. As such, in all cases, single-

partition MSA is orders of magnitude more expensive than Scan; 212× slower in the worst case.

The partitions chosen by the iterative algorithm reduce MSA’s response time by three orders of

magnitude hence it outperforms Scan.

Takeaway:When filters occur in uncorrelated columns, data access time for MSA is prohibitive.

In high-dimensional workloads, partitioning is necessary for making MSA the best option.

10 DISCUSSION
Although the current work focuses on reducing data-access cost, with sufficient optimizer support,

𝑆𝐻2𝑂 can also accelerate joins. Invisible joins [1], and data-induced predicates [16] propagate filters

across joining tables that 𝑆𝐻2𝑂 can use.

As presented, 𝑆𝐻2𝑂 naturally comes with trade-offs and limitations. First, it requires space for

storing the index, and processing time both for building and maintaining the index. Second, for

workloads that filter on a large number of columns, and which have no correlations that partitioning

can exploit, it effectively indexes and probes a limited number of columns and achieves low speedup.

Third, it currently uses one clustered index for the whole workload and misses opportunities for

using multiple unclustered indices. Finally, 𝑆𝐻2𝑂 is contingent on using work sharing, whereas

in some use cases other alternatives are preferable, e.g., unclustered indices for point queries and

materialized views in low-concurrency, real-time applications with static workload.

11 CONCLUSIONS
To provide interactivity for highly concurrent workloads, we propose 𝑆𝐻2𝑂 , a novel data-access

method that combines efficient selective access with minimal filtering cost, and scalability. 𝑆𝐻2𝑂

amortizes filtering cost by exploiting multidimensional regions where filtering decisions are invari-

ant across all tuples. However, multidimensional data access suffers from the curse of dimensionality.

To avoid dimensionality pitfalls, 𝑆𝐻2𝑂 employs two complementary mechanisms, attribute selection

and partitioning. By probing only a select subset of dimensions and taking advantage of query and

data correlations, 𝑆𝐻2𝑂 outperforms shared scan and filters from 1.8× to 22.2×.
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