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ABSTRACT
Stream Processing Engines (SPEs) have recently begun utilizing het-
erogeneous coprocessors (e.g., GPUs) to meet the velocity require-
ments of modern real-time applications. The massive parallelism
and high memory bandwidth of GPUs can significantly increase
processing throughput in data-intensive streaming scenarios, such
as windowed aggregations. However, previous research only fo-
cused on the overall architecture of hybrid CPU-GPU streaming
systems and the need for efficient in-GPU window operators was
overshadowed by the limited interconnect bandwidth.

With aggregation taking up a significant portion of streaming
workloads, in this work, we analyze and optimize the performance
of sliding window aggregates over GPUs. Current implementations
under-utilize the hardware, and for a range of query parameters
they cannot even saturate the bandwidth of the interconnect. To op-
timize execution, we first evaluate the fundamental building blocks
of streaming aggregation for GPUs and identify the performance
bottlenecks. Then, we build Slider: an adaptive algorithm that se-
lects the most appropriate primitives and kernel configurations
based on the query parameters. Our evaluation shows that Slider
outperforms previous approaches by 3×-1250×, and saturates both
the interconnect and the memory bandwidth for a wide range of
examined input workloads.
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1 INTRODUCTION
Real-time analytics usually involve the execution of continuous
queries over high-throughput streams. To handle velocity and meet
the performance requirements of such streams, common stream
processing engines (e.g., Spark [9], Flink [1], Storm [8]) increase
data parallelism by scaling-out to multiple machines. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAMON’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8556-5/21/06. . . $15.00
https://doi.org/10.1145/3465998.3466014

0

200

400

600

800

1000

1200

2 4 8 16 32 64 128 256 512 1024

T
h

ro
u

g
h

p
u

t 
(G

B
/s

e
c)

slide

GBL SH

Memory bandwidth

> 1200x 3x

NVLink bw
PCI-e

 bw

Figure 1: Hardware underutilization for a SUM query over a
sliding window of 2048 items, and for various window slides.
Execution takes place on an NVIDIA Tesla V100S GPU.

it has been shown that these systems underutilize the available
hardware and cannot scale up efficiently [10]. Moreover, modern
servers are usually heterogeneous and apart from multi-core CPUs,
they are also equipped with hardware accelerators such as GPUs. To
fill this gap, and exploit the parallelism provided by the hardware,
there have been efforts to synergistically process data streams on
both CPU and GPU cores [2, 4, 11]. These new, hybrid systems
propose end-to-end solutions that integrate both architectures and
efficiently schedule tasks to either of the two. Nevertheless, they do
not delve into individual operators and do not discuss GPU-efficient
algorithms for streaming operators, such as window aggregations,
one of the biggest class of streaming workloads [7].

While efficient window aggregations for CPUs have been the
focus of past work, GPU solutions are still underutilizing the hard-
ware and for a range of configurations they incur more overheads
than fetching data from the CPU. Figure 1 shows the missed oppor-
tunities for a simple SUM query over a sliding window of 2048 items,
when we use two standard implementations (described in detail
in Section 3). Performance varies depending on the window slide,
but in all cases, the maximum achieved throughput is from 3× to
more than 1200× lower than the memory bandwidth of the device.
While window aggregations can theoretically achieve near memory
bandwidth performance, existing approaches severely underuti-
lize the resources, wasting GPU time from other more appropriate
tasks, restricting the amount of window configurations that can be
computed per data stream, and, for small slides, they even fail to
sustain the incoming data bandwidth, by running slower than the
PCI-e or NVLink bandwidth.

This work analyzes the shortcomings of existing approaches,
frames the fundamental building blocks of in-GPU window aggre-
gation, and proposes Slider: an algorithm that automatically selects
the best combination of building blocks based on the query and ker-
nel configuration. Slider reduces the inter-thread communication,
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which is essential due to the massive GPU parallelism and limited
per-thread cache. Furthermore, Slider, whenever possible, pulls op-
erations to faster tiers of the memory hierarchy and cooperatively
uses the GPU threads to avoid conflicts.

The contributions of this work are summarized as follows:
• We analyze the behavior of sliding window aggregation on
GPUs and classify the challenges that arise due to query and
hardware characteristics.

• We propose three building blocks that efficiently utilize
the fast memory layers and reduce redundant computation
through cooperative processing.

• We show how to automatically select the most appropriate
configuration for the query at hand. Our evaluation shows
that Slider, the proposed algorithm, saturates the intercon-
nect and outperform previous approaches by 3× to 1250×.

2 STREAMING AND QUERY MODEL
We consider a stream 𝑆 = ⟨𝑡1, 𝑡2, 𝑡3, ...⟩ as an infinite sequence of
tuples. Similar to previous work on streams and heterogeneous
co-processors, the stream is partitioned into disjoint batches of
size 𝐵 and execution happens in a per batch basis. Each batch is
transferred to the device over the PCI-e bus and then, it is processed
fully in parallel. As we focus on the implementation of the operators
and not on the overall system, in this work, we assume that data
has already been transferred and is GPU resident. Henceforth, with
input we refer to the batch that has been transferred to the device’s
memory and not to the original stream.

Window aggregation forms a sequence of finite subsets over the
input and computes an aggregate for each of these subsets. Here, we
only consider count-based, sliding windows. Sliding windows de-
fine a fixed distance between the start of two consecutive windows.
This distance is called a slide, and by allowing it to be smaller than
the window size, adjacent windows overlap and a single tuple may
contribute to the aggregate of multiple windows. More specifically,
for each tuple, we have to update

⌈
𝑊
𝑠

⌉
window results, where𝑊 is

the window size and 𝑠 the slide. For the remainder of the paper, we
refer to the term

⌈
𝑊
𝑠

⌉
as the fan-out of the aggregation.

The last thing to define for window aggregation is the aggregate
function. Functions with different properties allow different kinds of
optimization. Aggregate functions are classified [3] into: distributive,
algebraic, and holistic. This work focuses on optimizing distributive
aggregations; algebraic ones follow trivially and we leave holistic
functions for future work.

3 WINDOW AGGREGATION ALGORITHMS
Similar to the CPU case, window aggregations take place in three
phases: scanning, pre-aggregation and final aggregation. Here, we
propose a suite of algorithms for the computation of distributive
functions on the GPU; we explain how each algorithm implements
each of the aggregation phases and discuss its bottlenecks.

3.1 BASELINE IMPLEMENTATIONS
We consider two common algorithms for implementing sliding
window aggregation on the GPU: one that uses only the global
memory (GBL) and one that also uses the scratchpad (SH). Both
underutilize the hardware, nevertheless our proposed hardware-
conscious algorithm builds on top of their building blocks.
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Figure 2: Window aggregation of size 6 and slide 2 and the
corresponding layout of the GPU memory for GBL

GBL. The simplest way to compute a window aggregate is to
scan the input from the global GPU memory, and for each item, to
perform fan-out atomic updates to the output (also located in global
memory). The process is illustrated in Figure 2. To exploit locality,
avoid overfetching and maximize throughput, the scanning of the
input happens in a coalesced manner. Naïvely, for each input item,
the corresponding thread updates the affected output aggregates
in a sequential manner. Thus, every 𝑠 consecutive threads, read
consecutive items from the input and update the same aggregate
results in the output. Updates for the same aggregate are handled
as conflicts and are serialized by the corresponding hardware units,
leading to higher latency and lower throughput. To decrease such
conflicts, we apply updates using a circular pattern: updates are
arranged as a circular list and each thread consumes its list starting
from the 𝑙𝑎𝑛𝑒 𝑖𝑑-th update, reducing conflicts per update step.

SH. To remedy the high aggregation cost of GBL, we also con-
sider an enhanced version of the baseline algorithm, that makes use
of the local scratchpad. In GPUs, each streaming multiprocessor is
equipped with a software-managed cache (scratchpad or in CUDA
terminology “shared memory”) that is shared among the threads of
the same block and is much faster than global memory. Thus, we
use this shared memory for pre-aggregation within a block. Each
thread reads the input in a coalesced way and performs fan-out
updates in the shared memory using atomic operations. Then, the
partial aggregates of a block are flushed to the global output array.

By applying this pre-aggregation, the bottleneck shifts from
updating the global memory to updating the aggregates in the
scratchpad and flushing the reduced output. Shared memory is
organized in banks and accesses to the same bank are serialized.
To avoid overheads due to bank conflicts from intra-slide threads,
we write using the circular pattern. Finally, as shared memory is
a scarce resource, its capacity can be exceeded even for moderate
𝑓 𝑎𝑛𝑜𝑢𝑡𝑠 , making this method inapplicable for high fan-outs.

3.2 GPU-SENSITIVE TRAITS OF WINDOW
AGGREGATION

Window aggregations in GPUs can be decomposed into two logical
execution phases: slicing and expansion. Similar to techniques such
as PANE [5] for the CPU, slicing permits incremental computation.
The expansion phase further combines the partial-aggregates in
order to produce final results. This section analyzes the two phases,
and matches their traits with the GPU hardware components.

3.2.1 Slicing. The first logical phase aims at slicing the stream
in a convenient way that allows incremental processing, avoids
redundant computation and facilitates the communication between
different threads. The fact that, in sliding windows, every 𝑠 items
update the same output aggregate, creates both opportunities for
optimization, but also conflicts across consecutive elements.
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By always performing fan-out updates per input item, both GBL
and SH avoid the need for slicing. However, as in PANE, we observe
that by pre-aggregating consecutive input elements, the number of
updates can be reduced by a factor of 𝑠 .

Pre-aggregation requires either thread synchronization or the
same thread to read and process consecutive input elements. In
GPUs, assigning consecutive items to the same thread creates
strided access patterns. For large slide values, each thread of a
warp accesses multiple cache-lines, leading to overfetching. Thus,
while such a strategy minimizes thread communication, it wastes
input bandwidth and the overall throughput degrades. On the other
hand, coalesced scans require cross-thread and, more importantly,
inter-warp communication to combine partial-results.

To avoid both synchronization andmaterialization overheads, we
use a parallel reduction in the warp-level. Specifically, we perform
a read-compress process: first, we scan the input using vectorized
loads (i.e., quadruples of 32-bit values). The loaded quadruple is
directly pre-aggregated, and the corresponding thread maintains
only the partial aggregate. As consecutive quadruples of the input
are handled by different threads, whenever the slide allows it, we
apply a second level of parallel, in-register aggregation through
shuffling. Empty slots, created by this shuffling, are continuously
refilled with new input data. This way, we ensure that all threads
will be active and busy in the expansion phase that follows. The
process is repeated until each thread has aggregated 𝑠 items.

While assigning a thread per slide reduces the inter-warp com-
munication and materialization, if the number of slides becomes
lower than the number of threads, the device is under-utilized and
throughput drops. To avoid this and keep all threads busy, we limit
the number of items per thread based on the GPU’s characteristics.

3.2.2 Expansion. This processing phase uses the pre-aggregated
partial results and computes the final aggregates. As in CPUs, we
need to make multiple updates per item in order to realize a final
result, we call it the expansion phase. In this section, with the term
input we refer to the output of the slicing phase. We propose two
techniques for the expansion: (i) a prefix-based, whose communica-
tion is unaffected by the 𝑓 𝑎𝑛𝑜𝑢𝑡 but requires an extra pass over the
input, and (ii) a cooperation-based, which requires a single-pass but
depends on the capacity of the local scratchpad. The selection of
the most beneficial technique depends on the query parameters. To
simplify the description, for the remainder of the section we use a
SUM function. However, our algorithms can be trivially generalized
to other distributive functions.

CoopExp, our cooperative approach, takes advantage of tem-
poral locality and allows threads to cooperatively update multiple
aggregates, while avoiding bank-conflicts and overfetching. As
intra-warp communication happens at clock-speed, we use a two
step process that first combines updates issued by threads of the
same warp, and then issues a reduced number of atomic updates
to the output. To further improve the performance, we use the
scratchpad as an intermediary, pre-aggregation buffer.

Consecutive warps handle consecutive slides and thus they share
aggregates. This property, along with the use of shared memory,
allows for an extra optimization: only the first and last 𝑓 𝑎𝑛𝑜𝑢𝑡 ag-
gregates need to be atomically updated in global memory. The rest
aggregates can be safely updated through regular store operations.

To reduce the total amount of operations in global memory, we
configure the number of slides handled by a single block to the
maximum number of slides whose working set can fit in shared
memory.When the fan-out is large enough and exceeds the capacity
of shared memory, CoopExp is not applicable and for the case of
invertible functions, our second technique comes into play.

PrefixExp removes the dependency to the 𝑓 𝑎𝑛𝑜𝑢𝑡 . As a first
step, we convert the input array to an array of prefix-sums. This
can be done in near memory-speed by using Merrill and Garland’s
algorithm [6], implemented in NVIDIA’s CUB library. Then we
scan the array of prefix-sums and for each window edge, the corre-
sponding thread looks back and accesses the start of the window.
Then, we subtract the start from the end prefix-sum. In contrast to
CoopExp, the prefix-sum requires only 𝑂 (1) state communication
across thread blocks consuming consecutive input chunks [6].

Summary. CoopExp maintains the running-windows through
atomic operations and executes them on shared memory to hide
the cost of concurrent updates. In contrast, PrefixExp avoids shared
state, by effectively increasing the impact of each input item to the
full input sequence instead of the impacted window, relying on
the invertibility of the aggregate function. Effectively, PrefixExp
enforces the materialization and scanning of the prefix-sum to avoid
the shared-memory capacity limitation.

3.3 END-TO-END ALGORITHMS
To provide efficient GPU window aggregation, we combine the pre-
sented building blocks based on the query parameters and propose
the following algorithms: (i)COOP-OPT. Combining the slicing
approach with CoopExp allows a single-pass algorithm, that re-
quires a single scan of the input but is restricted by the amount
of available scratchpad capacity. (ii)DIRECT-PREFIX skips the
slicing phase and directly applies PrefixExp expansion. This algo-
rithm needs 2 passes and also, the reading pattern of the second
pass depends on the slide and may access items that reside in differ-
ent cache lines. (iii)REDUCED-PREFIX. To reduce overfetching,
we also use a 3-phase algorithm that combines COOP-OPT with
PrefixExp expansion. In cases where the fan-out is too large and
COOP-OPT cannot be applied for window𝑊 and slide 𝑠 , due to
shared memory limitations, instead we run COOP-OPT with a slide
equal to the maximum common divisor of𝑊 and 𝑠 , that is less than
the scratchpad’s size. Conceptually, this is equivalent to a slicing
phase. Then, we can apply the 2-level process of the PrefixExp ex-
pansion. (iv)SLIDER. To get the best out of the available hardware,
we devise Slider: a simple heuristic algorithm to select the most
appropriate execution path for the slicing and expansion phases.
Specifically, when the function is non-invertible, we always select
COOP-OPT, with a fall-back to GBL, in case the scratchpad capacity
is insufficient. When the function is invertible, Slider uses a cost
model that lets it decide among the aforementioned options.

4 EVALUATION
In this Section, we show: (i) how the proposed algorithms improve
throughput over the baseline implementations, and (ii) how they
compare to each other. Since the proposed approaches are invari-
ant to data characteristics (e.g., selectivity, skewness in time), in
the interest of space, all the experiments use a 4𝐺𝐵-sized array
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Figure 3: Throughput of SH and Slider for window sizes and slides in the range [4, 1048576].
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Figure 4: Comparison of COOP-OPT against the prefix-sum-
based algorithms for a window of size 64𝑘 and various slides

of uniformly random, 32-bit integers and only distributive invert-
ible functions. Specifically, we report performance only for SUM
aggregations. However, the results for the baseline algorithms and
COOP-OPT also hold for non-invertible functions, such as MIN and
MAX. The determinant input characteristic is the window specifica-
tion, i.e., the defined window size and slide. For this reason, both
for the size and the slide, we exhaustively explore all powers of 2
up to 220, and we identify regions of the query space with differ-
ent performance characteristics. For all the experiments we report
throughput as consumed bytes (𝐺𝐵) over the execution time. Data
are pre-loaded in GPU memory and as all the approaches have to
read the full input to produce accurate results, their performance is
upped bounded by the memory bandwidth.

All the experiments are conducted on an NVIDIA Tesla V100S
GPU hosted in a 2 x 12-core Intel Xeon Gold 5118 CPU server
with 376GB DRAM. The V100S GPU has 32GB of device memory,
1134GBps theoretical memory bandwidth and 84 SMs.

End-to-end algorithms. In Figure 4, we evaluate the proposed
algorithms, and compare them with the SH baseline. DIRECT-
PREFIX always outperforms the baseline, but as it requires two
passes over the data and does not make any reduction, it cannot
exceed the 440𝐺𝐵𝑝𝑠 (half the memory bandwidth) for any of the
slides. In the case of REDUCED-PREFIX, the extra job seems to
pay off: the larger the slide, the greater the potential reduction in
the first job and the higher the achieved throughput, showing that
the extra pass is significant only for small slides/reduction factors.
Since COOP-OPT follows a multi-level pre-aggregation technique
and requires a single pass over the data, it is always at least as fast as
REDUCED-PREFIX. COOP-OPT outperforms REDUCED-PREFIX
everywhere but in the small slides (high fan-out), where it cannot
run due to shared memory limitations.

Figure 3(SH) shows the throughput of SH for different window
configurations. Missing points in the bottom-left corner indicate
that the slide cannot be greater than the window size. Colors change

in a diagonal pattern, verifying that we hit bottlenecks based on
the corresponding fan-out. Throughput never exceeds 368𝐺𝐵𝑝𝑠 ,
and for the data-points in dark red color, the execution cannot even
saturate the interconnect. Moreover, the missing points in the top-
right corner indicate that the available shared memory capacity
was insufficient and GBL should have been used instead. However,
for the corresponding fan-outs GBL achieves less than 1𝐺𝐵𝑝𝑠 , thus
hardware underutilization is unavoidable for the baselines.

Slider algorithm. Figure 3(Slider) shows the throughput of the
adaptive algorithm for each window configuration. For our GPU,
and given the invertible nature of the used aggregate, Slider se-
lects REDUCED-PREFIX whenever 𝑓 𝑎𝑛𝑜𝑢𝑡 < 8𝐾 , a little bit ear-
lier than the 24𝐾 capacity limitation. Slider always exceeds the
interconnect’s bandwidth and almost always operates near the
memory bandwidth, achieving more than 800𝐺𝐵𝑝𝑠 for 77% of the
queries. Furthermore, comparing with the actual throughput of
each approach, Slider never selected a suboptimal approach with a
difference greater than noise levels.

5 CONCLUSIONS
In this paper, we improve the efficiency of sliding window aggre-
gation on GPUs. In the past, the need for fast in-GPU streaming
aggregation was overshadowed by the limited bandwidth of the in-
terconnects. However, the technological advancements in intercon-
nects push further the performance limits and stress the operators.
In addition, there are query parameters for which sliding window
aggregation runs below the PCI-e or NVLink bandwidth, failing to
sustain the incoming data throughput. In order to fully utilize the
available hardware, we decompose window aggregation into dis-
crete phases and identify the fundamental characteristics, as well as
the bottlenecks for each phase. Then, we map algorithmic character-
istics to hardware components and create Slider: an algorithm that
adaptively selects the kernel configuration and the right building
block for each processing phase. Our evaluation shows that Slider
outperforms existing approaches by 3× to 1250× and by operating
at a throughput near the GPU memory bandwidth, for in-GPU data
it is optimal and outperforms any CPU implementation.
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