
MoDisSENSE: A Distributed Spatio-Temporal and Textual
Processing Platform for Social Networking Services

Ioannis Mytilinis ? Ioannis Giannakopoulos ? Ioannis Konstantinou ?

Katerina Doka ? Dimitrios Tsitsigkos ♦ Manolis Terrovitis ♦ Lampros Giampouras ‡

Nectarios Koziris ?

?CSLAB, NTUA
{gmytil,ggian,ikons,katerina,
nkoziris}@cslab.ece.ntua.gr

♦IMIS, RC Athena
{tsitsigkosdim,mter}@imis.athena-

innovation.gr

‡Athens Technology Center
S.A., Athens, Greece
l.giampouras@atc.gr

ABSTRACT
The amount of social networking data that is being produced
and consumed daily is huge and it is constantly increasing.
A user’s digital footprint coming from social networks or
mobile devices, such as comments and check-ins contains
valuable information about his preferences. The collection
and analysis of such footprints using also information about
the users’ friends and their footprints offers many oppor-
tunities in areas such as personalized search, recommenda-
tions, etc. When the size of the collected data or the com-
plexity of the applied methods increases, traditional stor-
age and processing systems are not enough and distributed
approaches are employed. In this work, we present MoDis-
SENSE, an open-source distributed platform that provides
personalized search for points of interest and trending events
based on the user’s social graph by combining spatio-textual
user generated data. The system is designed with scalability
in mind, it is built using a combination of latest state-of-
the art big data frameworks and its functionality is offered
through easy to use mobile and web clients which support
the most popular social networks. We give an overview of its
architectural components and technologies and we evaluate
its performance and scalability using different query types
over various cluster sizes. Using the web or mobile clients,
users are allowed to register themselves with their own so-
cial network credentials, perform socially enhanced queries
for POIs, browse the results and explore the automatic blog
creation functionality that is extracted by analyzing already
collected GPS traces.

1. INTRODUCTION
The advent of Web 2.0 has brought an unprecedented data

explosion on the web. The wide adoption of social networks
has concluded in terabytes of produced data every day. In
June 2014 for example, Facebook had on average 654 million

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGMOD’15, May 31 - June 04, 2015, Melbourne, VIC, Australia
Copyright 2015ACM 978-1-4503-2758-9/15/05 ...$15.00
http://dx.doi.org/10.1145/2723372.2735375.

mobile active users [6] on a daily basis. Tweets, Facebook
“likes”, Foursquare check-ins and Instagram pictures are just
a part of the social-media data deluge.

As this data is mostly a product of human communication,
it is susceptible to reveal relationships between different enti-
ties. This linkage of data provides tremendous opportunities
for data analytics [15], predictions [17] and smart recom-
mendation systems [?]. Taking advantage of the data access
that social network APIs provide, developers launch their
own third-party social applications to offer smart services
and leverage user experience.

Personalization is undoubtedly the newest trend in social
networks. Indeed, the most prevalent social networks launch
everyday new services that exploit the social graph in order
to provide personalized experience. A very recent such ex-
ample is the new Foursquare and Swarm services that en-
able users to search for restaurants or other venues based on
tastes and friend recommendations.

To this end, we offer a more detailed architectural overview
and a comprehensive demonstration of MoDisSENSE [16]
a social, geo-location system built on top of a distributed
big-data enabled platform. MoDisSENSE combines het-
erogeneous data from various data sources, such as user
GPS traces from cell phones, profile information and com-
ments from existing friends in various social networks con-
nected with the platform (MoDisSENSE currently supports
Facebook, Twitter and Foursquare, but it can be extended
to more platforms with the appropriate plugin implemen-
tation). Through distributed spatio-temporal and textual
analysis, our system provides the following functionalities:

• Socially enhanced search of Points of Interest (POIs) based
on criteria such as user location, automatic sentiment ex-
traction of a user’s social media friends preferences or a
combination of the above.

• Automatic discovery of new POIs and trending events,
i.e., spontaneous gatherings of people in a specific loca-
tion, such as concerts, traffic jams etc.

• Inference of the user’s semantic trajectory through the
combination of her GPS traces with background informa-
tion such as maps, check-ins, user comments, etc.

• Semi-Automatic extraction of a user’s daily activities in
the form of a blog.

A user can search for POIs on a bounding box on the map
posing both simple as well as more advanced criteria. Sim-
ple criteria include commonly used features such as keywords

characterizing the POI or a time frame of interest. Advanced
criteria refer to socially charged information such as the in-
terest of a POI, i.e., the opinion of one’s friends of it or its
hotness, i.e., the crowd concentration over time in it. Thus,
MoDisSENSE is capable of answering queries such as “Show
me the top ten restaurants in Melbourne that (a specific
subset, or all) of my Facebook friends prefer for dinner dur-
ing summer” or “Show me the five hottest (i.e., most visited)
places in town yesterday night”.

The latter query is a trending events query. Tripadvi-
sor already offers a trending events capability. However,
MoDisSENSE adds a personalized flavor, making feasible
personalized trending events queries with configurable time
granularity. So MoDisSENSE can resolve the query “Show
me the three hottest places in Melbourne visited by my x
specific Foursquare friends the last y hours”.

One additional feature of MoDisSENSE is the automatic
POIs detection. A distributed version [?] of DBSCAN, a
well-known clustering algorithm, is applied to MoDisSENSE
users’ GPS traces. A dense concentration of traces signifies
a POI existence. Furthermore, the correlation of spatio-
temporal information provided by the GPS traces with POI
related texts automatically produces a daily blog with the
user’s activity. The produced blog can be manually updated
by the user and can be shared in Facebook or Twitter.

The contribution of this work is manyfold:
• We devise a highly scalable architecture that efficiently

handles data from heterogeneous sources and is able to
deal with big data scenarios.

• We provide an Apache License-2.0 open-source [?] im-
plementation of a social network based application which
leverages the capabilities of other existing applications.

• We adapt and finely-tune well-known classification and
clustering algorithms in a Hadoop-based environment.

• We experiment with datasets in the order of tens of GB,
from Tripadvisor, Facebook, Foursquare and Twitter.

• We validate the efficiency, accuracy and scalability of the
proposed architecture and algorithms.

The remainder of this paper is organized as follows: Section
2 presents the MoDisSENSE architecture, Section 3 provides
an experimental evaluation of the platform, Section 4 de-
scribes the features to be presented to the demo attendees
and Section ?? presents the related work.

2. ARCHITECTURE
MoDisSENSE features an architecture that is illustrated

in Figure 1. In favor of flexibility and ease of maintenance,
the system follows a completely modular design. Among
system modules a fundamental distinction is applied: each
module is classified as a frontend or a backend module.

The frontend consists of the web and two mobile (An-
droid and iOS) applications. The web, Android and iOS
clients are developed using DotNetNuke, Java Android SDK
and Objective-C technologies respectively and can be down-
loaded from the github repository [?].

The frontend applications communicate with the backend
through a REST API. A specific JSON format has been de-
fined in order to send requests to the backend and return
results to the user. This feature enables the seamless inte-
gration of more client applications with the platform.

As Figure 1 shows, the backend contains a set of pro-
cessing and storage modules. For the processing modules, a
web server farm and a Hadoop cluster are established. The

Frontend

Backend

MoDisSENSE app

D
at

as
to

re

Hadoop Cluster

Data
Collection

Text
Processing

GPS taces
processing

Query
Answering

REST API
Server farm

data/queries

personalized

non-
personalized

HBase ClusterSocial InfoText

GPS

PostgreSQL
 Server

POIs

BlogsVisits

HotIn
Update

User
Management

REST APIREST API

Figure 1: MoDisSENSE platform architecture.

widespread use of social networks has lead to an environment
where huge amounts of data are created on high and unpre-
dictable rates. Thus, the volume of data, needed to be pro-
cessed, demands a distributed approach. Since the Hadoop
framework emerges for large-scale analytics, we design and
deploy the following Hadoop-based processing modules:

• Data Collection Module
• HotInt Update Module
• Text Processing Module
• Event detection module

Apart from the processing subsystem, a storage system
is employed to the backend, in order to store the collected
and derived data. We refer to the components of the stor-
age subsystem as repositories. Repositories are conceptu-
ally classified to primitive and non-primitive data reposito-
ries. We consider primitive data to be the one have not
been processed. Primitive data are collected from external
data sources such as social networks(Facebook, Foursquare,
Twitter) and GPS traces and are directly stored to the plat-
form. Non-primitive data repositories, which are the ones
serving answers to queries, hold information extracted from
primitive data through spatio-textual algorithms.

When multiple concurrent users issue queries to the plat-
form, system design should meet demand. Thus, there is
a need for a scalable approach. To this end, the Apache
HBase NoSQL datastore is used. However, there are queries
which require either complex indexing schemes or extended
random access to the underlying data. These queries cannot
be efficiently executed in HBase. For this reason, we devise
a hybrid architecture that uses HBase for batch queries that
can be efficiently executed in parallel and PostgreSQL for
online random-access queries that cannot. In addition to
the already mentioned modules, we deploy the User Man-
agement and the Query Answering Module on the web server
farm that acts as a gateway to the platform. Both modules
are implemented as lightweight web services which put load
to the datastore without stressing the web servers.

In the following subsections, we describe with further de-
tails the repositories and the processing modules of the MoDis-
SENSE platform.

2.1 Datastore Repositories
POI Repository. It contains all the information MoDis-

SENSE needs to know about POIs. The name of a POI, its
geographical location, the keywords characterizing it and the
hotness/interest metrics are all stored in this repository. A
new entry to the repository can be inserted either explic-
itly by the user through the frontend GUI or automatically
by the Event Detection Module. While POI repository has
to deal with low insert/update rates, it should be able to
handle heavy, random access read loads. The indexing ca-
pabilities PostgreSQL offers make it an ideal infrastructure
for hosting POI repository.

Social Info Repository. This is a HBase-resident table
where social graph information is held. For each MoDis-
SENSE user and for each connected social network, the list
of friends is persisted. More specifically, we store a com-
pressed list with the unique social network id, the name and
the profile picture of each friend.

Text Repository. The textual data is the most demand-
ing part, in terms of utilized disk space, in the MoDisSENSE
ecosystem. For this reason , it is stored in the NoSQL clus-
ter and is spread across all available cluster nodes. The
Text repository holds all the collected comments and reviews
about POIs. Texts are indexed by user, POI and time. For
any given POI, we are able to retrieve the comments that a
specified user made at any given time interval.

Visits Repository. Visits Repository is also persisted
as an HBase table. In order to make POI recommendations
based on social friends’ preferences, we need to keep track
of all visits of a user’s friends. Each visit is represented by a
struct with the complete POI information (name, latitude,
longitude, etc). Moreover, this struct is enriched with the
interest and hotness metrics. Every time a MoDisSENSE
user or a user’s social friend visits a POI, a visit struct in-
dexed by user and time is added to the repository. Thus,
for any given time interval, we know the places that all of a
user’s friends have been and a score indicating each friend’s
opinion.

Since the visit struct, that we persist each time someone
visits a POI, contains the whole POI information, there is
high replicated data. The alternative schema design strat-
egy would be joining POI information with visit informa-
tion at query time. However, our experiments suggest data
replication to be more efficient. Our schema in combination
with HBase coprocessors and a fully parallel query mecha-
nism, it seems to offer more scalability and achieve lower la-
tency numbers even when many concurrent users with many
friends each stress the system.

GPS Traces Repository. The mobile devices, that have
MoDisSENSE application installed, can push their GPS traces
to the platform. Since the platform may continuously receive
GPS traces, this repository is expected to deal with a high
update rate. Furthermore, as GPS traces are not queried
directly by the users but are periodically processed in bulk,
there is no need to build indices on them. The volume of
data, the opportunities for parallel bulk processing and the
absence of indices are the main reasons why we choose to
put GPS repository in HBase.

Blogs Repository. We define a semantic trajectory to
be a timestamped sequence of POIs summarizing user’s ac-
tivity during the day. As POIs, blogs are frequently queried
by users but they do not have to deal with heavy updates
and thus are stored as a PostgreSQL resident table.

2.2 Processing Modules
User Management Module. The User Management

module is responsible for the user authentication to the plat-
form. The user is registered either through the mobile ap-
plications or the website. MoDisSENSE does not require a
username or password. The signing-in process is carried out
only with the use of the social network credentials. The reg-
istration workflow follows the OAuth protocol. The OAuth
authorization framework enables a third-party application
to obtain access to an HTTP service on behalf of a resource
owner. When the authentication is successful, the user logs
in and an access token is returned to the MoDisSENSE plat-
form. With this token, MoDisSENSE can interact with the
connected social networks on behalf of the end user. It can
monitor user’s activity, user’s friends activity, make posts
etc. Being an authorized member of the platform, the user
can connect to the MoDisSENSE account more social net-
works. When more than one social networks are connected
to the platform, MoDisSENSE joins the acquired data and
enriches the information that is indexed and stored.

Data Collection Module. The functionality of this
module is to collect data from external data sources. Pe-
riodically, the Data Collection Module scans in parallel all
the authorized users of MoDisSENSE; each worker scans a
different set of users. For each user and for all connected so-
cial networks, it downloads all the interesting updates from
the user’s social profile. Since MoDisSENSE provides social
geo-location services, interesting updates are considered to
be user check-ins and the accompanying comments as well as
status updates. From this information, MoDisSENSE is able
to gain knowledge about the existence of POIs and people’s
opinion about them. Once data is streamed to the platform,
it is in-memory processed and then indexed and stored to
the appropriate repositories.

Text Processing Module. The Text Processing Mod-
ule performs sentiment analysis to all textual information
the platform collects through the Data Collection Module.
Comments from check-ins and POI reviews are classified,
real-time and in-memory, as positive or negative. The score
which results from the sentiment analysis is persisted to the
datastore along with the text itself.

As a classification algorithm, we choose the Naive Bayes
classifier that the Apache Mahout framework provides. Naive
Bayes is a supervised learning algorithm and thus it needs a
pre-annotated dataset for its training. For the training, data
from Tripadvisor, containing reviews for hotels, restaurants
and attractions, is used. The chosen dataset offers two key
advantages: First, it is semantically close to our application
data and thus results in a high quality training and second,
Tripadvisor comments are annotated with a rank from 1 to
5 that can be used as a classification score. After an exten-
sive experimental study and a fine-tuning of the algorithm
parameters, we managed to create a highly accurate classi-
fier that achieves an accuracy ratio of 94% towards unseen
data.

Event Detection Module. New events and POIs de-
tection constitute a core functionality of MoDisSENSE. A
distributed, Hadoop-based implementation of the DBSCAN
clustering algorithm [?] is employed for this reason. The
module is called periodically and processes in parallel the
updates of GPS Traces Repository in order to find traces
of high density; high density traces imply the existence of a
new POI. In order to avoid detecting already known POIs

to MoDisSENSE, traces falling near to existing POIs in POI
Repository are filtered out and are not taken into consider-
ation for clustering.

HotIn Update Module. POI Repository contains all
the non-personalized information about POIs. Two attributes
of the information stored for each POI are: hotness and in-
terest. Hotness and interest are inferred by an aggregation
over all visits persisted in Visits Repository within a con-
figurable time frame T. In order to aggregate hotness and
interest, a MapReduce job configured with a scanner over all
visits in T, is instantiated. HotIn Update Module is called
periodically in order to update the hotness/interest infor-
mation of the POI repository in PostgreSQL.

Query Answering Module. The Query Answering is
the module used for answering search queries. A search
query can take as input the following parameters:

• a bounding box on the map
• a list of keywords
• a list of social network friends
• a time window
• results sorting criteria
• the number of results to be returned

If a list of friends is provided, the query is considered to be
personalized. As Figure 1 shows, non-personalized queries
are answered by PostgreSQL while personalized ones by the
NoSQL cluster. A non-personalized query is a select SQL
query in PostgreSQL, since POI repository contains all the
demanded information.

In the case where some selected friends’ opinion should be
taken into account, MoDisSENSE should know whether the
selected friends have visited any place in the area of interest
and what score has been extracted by their visit. In order
to efficiently obtain this information, HBase coprocessors
are used. Each coprocessor is responsible for a region of
the Visit Repository table and performs HBase get requests
to the users under its authority. Since different friends are
located with high probability in different regions, a different
coprocessor is in charge of serving their visits and multiple
get requests are issued in parallel. Increasing the regions
number leads to increase in coprocessors number and thus
achieves higher degree of parallelism within a single query.

3. EXPERIMENTS
In this section we provide experiments and validate both

our architectural design and the selected optimizations for
the training of the Naive Bayes classifier.

3.1 Performance Evaluation
We first present some experiments for the scalability and

performance of the query answering module. Using a syn-
thetic dataset, we test the ability of the platform to respond
to personalized queries issued by its users for various loads
and different cluster sizes. Each personalized query involves
a set of friends; the opinion expressed by them for POIs
they have visited will determine the score of each POI for
a platform user. The platform user can set a number of
other parameters as well: the POI type, as expressed by the
keywords that accompany it, its geographical location, its
name, the time period of the visits, etc. In our experiments,
we identified that the dominant factor in the execution time
of the query is the number of social network friends that the
platform users define.

For the synthetic dataset generation, we collected infor-
mation from OpenStreetMap about 8500 POIs located in
Greece. Based on those POIs, we emulated the activity of
150k different social network users, each of whom has visited
a number of POIs and assigned a grade to it; this grade cor-
responds to the classification grade of the comment of the
user for this visit. The number of visits for each social net-
work friend follows the Normal Distribution with µ = 170
and σ = 101. The dataset is deployed into an HBase cluster
consisting of 16 dual-core VMs with 2 GB of RAM each,
running Linux (Ubuntu 14.04). The VMs are hosted in a
private Openstack cluster.

At first, we are going to study the impact of the number
of social network friends into the execution time of a single
query. At this point we will also examine how the cluster
size affects the execution time of a query. Secondarily, we
are going to extend our study to multiple concurrent queries
where we will also examine the behavior of the platform for
different number of concurrent queries and different cluster
configurations.

For the first point, we evaluate the execution time of a
query for different numbers of friends. In Figure ?? we pro-
vide our findings. In this experiment, we executed one query
at a time involving from 500 to 10k SN friends for three dif-
ferent cluster setups consisting of 4, 8 and 16 nodes. The
friends for each query are picked randomly in a uniform man-
ner. We repeated each query ten times and we provide the
average of those runs.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 500 2000 3500 5000 6500 8000 9500

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Number of SN friends

4 nodes
8 nodes

16 nodes

Figure 2: Query latency vs number of users

The number of friends affects the execution time in an
almost linear manner. Furthermore, an increase in the clus-
ter size leads to a latency decrease, since the execution is
happening in parallel to multiple nodes. By utilizing HBase
coprocessors, we managed to exploit the locality of the com-
putations into specific portions of the data: each coprocessor
operates into a specific HBase region (holding a specific por-
tion of the data), eliminates the visits that do not satisfy the
user defined criteria, aggregates multiple visits referring to
the same POI and sorts the candidate POIs according to the
aggregated scores. Finally, each coprocessor returns to the
Web Server the sorted list of POIs which, in turn, merges
the results and returns the final list of POIs to the end user.

Using the previously described technique, we achieved to
get latencies lower than 1 second for more than 5000 users.

1The vast majority of the users has performed between 140
and 200 visits in different pois.

Bearing into consideration that social networks like Face-
book, retain a limit on the maximum number of connections
(5000 friends per user), we can guarantee that the latency
for each query remains in an acceptable level for a real time
application.

We now extend our analysis for the cases where multi-
ple queries are issued concurrently to the platform. For our
experiments we create a number of concurrent queries in-
volving 6000 social network friends each and we measure
their execution time for different cluster sizes. In Figure ??,
we provide our results. The execution time in the vertical
axis represents the average execution time for each case.

 10

 15

 20

 25

 30

 35

 40

 45

30 35 40 45 50

E
x
e

c
u

ti
o

n
 t

im
e

s
 (

s
e

c
)

Concurrent queries

4 nodes
8 nodes

16 nodes

Figure 3: Average execution time for concurrent
queries

As Figure ?? demonstrates, an increase in the number of
concurrent queries leads to worse performance (larger exe-
cution time). However, for larger cluster sizes we can make
the following observations: (a) even for the lowest number
of concurrent queries the 16 cluster case is approximately
2.5 times better than the 4 cluster case, indicative of the
proper utilization of more resources and (b) larger cluster
sizes do not allow execution time to rise fast as the number
of concurrent queries increases. Specifically, when the clus-
ter consists of 4 nodes, the execution time is high even for
the lowest number of concurrent queries and it continues to
rise rapidly while the number of queries is increased. In the
8 nodes case, although at first the achieved execution times
are relatively low, the increase becomes rapid for more con-
current queries, whereas in the 16 nodes case we see that the
increase is held in a minimum level. This is indicative of the
scalability of the platform, since more resources are properly
utilized and the platform becomes resistant to concurrency.

Finally, since greater number of concurrent queries leads
to more threads in the Web Server which, in turn, hits the
cluster, we can avoid any potential bottlenecks by replicat-
ing the Web Servers while simultaneously, we use a load
balancer to route the traffic to the web servers accordingly.
In our experimental setup, we identified that two 4-cores
web servers with 4 GB of RAM each are more than enough
to avoid such bottlenecks.

3.2 Accuracy Evaluation
In this section we evaluate the tuning of the Naive Bayes

classifier we use for sentiment analysis. As we have already
mentioned, for the training of the classifier, we crawl and
use data from Tripadvisor. We consider a Tripadvisor re-
view about a place to be a classification document. We

divide training documents into two sets: positive and neg-
ative opinion documents. Both sets should have almost the
same cardinality. Before feed the training set to the classi-
fier, a preprocessing step is applied which involves stemming,
turning all letters to lowercase and removing all words be-
longing to a list of stopwords. When the preprocessing step
is finished, Naive Bayes is applied to the data. Let this
procedure be the baseline training process. As a next step,
we experiment with the following optimizations: use of the
tf metric, 2-grams, Bi-Normal Separation and deletion of
words with less than x occurrences. These optimizations
can be given as parameters to the classification algorithm.
Experiments with different combinations for the algorithm
parameters were also conducted but are omitted due to space
constraints.

Figure ?? shows the classification accuracy for various
training set sizes, when the baseline and the optimized clas-
sification are used. We observe that when optimizations
are applied, classification results are more accurate for any
training size. Especially, for a training set of 500k docu-
ments, we achieve an accuracy of 93.8%. As we can see, the
500k documents form a threshold for the classifier. For both
versions of the algorithm after this point accuracy degrades.
This is because there is an overfit of data, which is a classic
problem in Machine Learning approaches.

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

#documents in trainingset

70

80

90

100

T
ra

in
in

g
 A

cc
u
ra

cy
 (

%
)

Baseline training

Training with optimizations

Figure 4: Classification accuracy for different train-
ing sizes

4. DEMO DESCRIPTION
The demonstration will allow attendees to interact with

MoDisSENSE web and mobile clients and explore their func-
tionality. In Figure ?? we present screenshots from the iOS
client, nevertheless the Android and web clients share the
same functionality and will also be available for demonstra-
tion. Attendees will be able to register themselves using
their social network credentials and browse the respective
clients. Due to lack of historical data and social context for
the attendee accounts, we will utilize a set of demo accounts
to showcase the personalized search functionality. In a nut-
shell, users will be able to perform the following: (a) Login
and link their social network accounts with MoDisSENSE
(Figure 2), (b) Perform personalized or not keyword search
for POIs between a map bounding box for a time window
and sorted by hotness or interest and (c) Explore the semi-
automated blog creation, editing and publishing functional-
ity.

In the first case the users will be able to join the MoDis-
SENSE platform by linking one or more of their Facebook,
Twitter or Foursquare accounts. When the linkage is done,
the social networking context (i.e., user and friend lists avatar

icons, etc) will be available at the respective client.
In the second scenario, we will showcase the personalized

search functionality. Two MoDisSENSE users with com-
pletely different social profiles are going to perform the same
search query on the same geographical area. The returned
POIs are expected to be different depending on the user ex-
ecuting the query. For example, we assume that the first
user’s friends love fast food while the other’s prefer luxu-
rious restaurants. A personalized query with the keyword
“restaurant” is expected to return fast food places in the case
of the first user whereas luxurious expensive restaurants in
the case of the second user.

For the third scenario, users will be able to create, edit and
post their own blog entries, or examine the extracted blogs of
the test accounts. The attendees will have the chance to see
the inferred semantic trajectories and also edit the respective
blog entries. Screenshots from the blog GUI are presented in
Figure 3. In the first two screenshots the semantic trajectory
of the user is presented. The leftmost screenshot permits the
user to edit the order the POIs were visited while the one in
the middle presents the trajectory on the map. Finally the
rightmost screenshot allows the editing of visit information
such as arrival and departure time.

5. RELATED WORK
This work is not the first that proposes a social network

based geo-location service. In [?, ?] two POI recommenda-
tion systems are presented. However, recommendations are
based only on historical location data from GPS traces and
check-ins, whereas MoDisSENSE combines spatio-textual data
in order to produce more accurate recommendations. Fur-
thermore, MoDisSENSE proves to be scalable while no im-
plementation and performance information is provided for
the other systems. In [?] a collaborative filtering based
system is presented. The presented system collects check-
in data from Gowalla, a location-based social network, and
makes a POI recommendation. And in this system, rec-
ommendation is solely based on check-ins and not on the
combination of heterogeneous data. The importance of the
textual content of social networks as a mean of expressing
opinion is already recognized. Many works such as [?, ?,
?] perform sentiment analysis on Twitter data in order to
extract user sentiment. Nevertheless, none of these works
combines the inferred knowledge with geo-location informa-
tion for POI recommendation.

6. ACKNOWLEDGMENTS
This work has been partially funded by the Hellenic (GSRT)

”COOPERATION 2009” National Action ”09SYN-72-881”
MoDisSense Project and the European Commission in terms
of the ASAP FP7 ICT Project under grant agreement no
619706. Dr. Terrovitis and Mr. Tsitsigkos were partly
supported by the GSRT in terms of the EU/Greece funded
KRIPIS Action: MEDA Project.

7. REFERENCES
[1] Apache Hadoop. http://hadoop.apache.org.

[2] Apache HBase. http://hbase.apache.org.

[3] Apache Mahout. https://mahout.apache.org/.

[4] DotNetNuke. http://www.dnnsoftware.com/.

[5] Facebook API. https://developers.facebook.com/.

[6] Facebook Stats. http://newsroom.fb.com/company-info/.

[7] Foursquare API. https://developer.foursquare.com/.

[8] HBase Coprocessors.
http://hbase.apache.org/book.html#coprocessors.

[9] MoDisSENSE Web App. http://modissense.gr/.

[10] OAuth. http://oauth.net/2/.

[11] Postgresql. http://www.postgresql.org/.

[12] Swarm. https://www.swarmapp.com/.

[13] Tripadvisor. http://www.tripadvisor.com/.

[14] xCode. https://developer.apple.com/xcode/.

[15] C. C. Aggarwal. An introduction to social network data
analytics. Springer, 2011.

[16] I. Mytilinis, I. Giannakopoulos, I. Konstantinou, K. Doka,
and N. Koziris. Modissense: A distributed platform for
social networking services over mobile devices. IEEE Big
Data, 2014.

[17] A. Tumasjan, T. O. Sprenger, P. G. Sandner, and I. M.
Welpe. Predicting elections with twitter: What 140
characters reveal about political sentiment. ICWSM,
10:178–185, 2010.

[t]0.50

Figure 5: Login and search GUI.
[t]0.50

Figure 6: Blog GUI functionalities.

Figure 7: Screenshots from the iOS mobile application.

