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ABSTRACT
Analytical tools often require real-time responses for highly con-

current parameterized workloads. A common solution is to answer

queries using materialized subexpressions, hence reducing process-

ing at runtime. However, as queries are still processed individually,

concurrent outstanding computations accumulate and increase re-

sponse times. By contrast, shared execution mitigates the effect of

concurrency and improves scalability by exploiting overlapping

work between queries but does so using heavyweight shared oper-

ators that result in high response times. Thus, on their own, both

reuse and work sharing fail to provide real-time responses for large

batches. Furthermore, naively combining the two approaches is in-

effective and can deteriorate performance due to increased filtering

costs, reduced marginal benefits, and lower reusability.

In this work, we present ParCuR, a framework that harmonizes

reuse with work sharing. ParCuR adapts reuse to work sharing in

four aspects: i) to reduce filtering costs, it builds access methods on

materialized results, ii) to resolve the conflict between benefits from

work sharing and materialization, it introduces a sharing-aware

materialization policy, iii) to incorporate reuse into sharing-aware

optimization, it introduces a two-phase optimization strategy, and

iv) to improve reusability and to avoid performance cliffs when

queries are partially covered, especially during workload shifts,

it combines partial reuse with data clustering based on historical

batches. ParCuR outperforms a state-of-the-art work-sharing data-

base by 6.4× and 2× in the SSB and TPC-H benchmarks respectively.

1 INTRODUCTION
Reusability is a driving factor formany analytical tools, such as dash-

boards, notebooks, and pipelines. Often, such reusable workloads

consist of highly concurrent parameterized queries. Dashboards,

for example, produce visualizations by processing several canned

queries that are parameterized through UI interactions or other

queries [8, 36]. Similarly, analysts rerun data-science notebooks for

reproducibility and exploration, often with different parameters

[2, 5, 21, 30]; hence, multiple queries that transform and analyze data

recur. While such applications process large numbers of queries,

they are interactive in nature and require low response times for

all queries. However, under high concurrency, backend databases

struggle to produce responses within a tight timeframe.

Traditionally, there are two approaches to accelerate processing

for large batches of recurring queries. On the one hand, we can

optimize individual queries. To do so, both commercial and open-

source databases can reuse materialized results; databases avoid

full recomputation and drastically reduce processing time. Often,

optimizing for reuse opportunities is automated in the form of

caching, recycling, and materialized views and subexpressions [13,
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Figure 1: ParCuR harmonizes reuse and work sharing to
speed up recurring batches

15, 29, 31, 40]. Nevertheless, materialization is subject to a storage

budget and thus leaves outstanding computations. Moreover, as the

outstanding computations for different queries are still processed

individually, response time is increased with concurrency.

On the other hand, we can optimize the scalability of batch

processing using work sharing. Work-sharing databases reduce the

total processing time by exploiting overlapping computations across

the queries in the batch. However, large numbers of heavyweight

shared operators and the fact that everything is recomputed from

scratch can violate stringent response time requirements.

Figure 1 depicts processing time for a large query batch
1
. Both

query-at-a-time (QaT) reuse and work sharing fail to provide fast re-

sponses. Reuse eliminates computations by precomputing joins, but

suffers from concurrent outstanding processing (i.e., filters on mate-

rialized results, non-materialized joins). By contrast, work sharing

mitigates the impact of concurrency and reduces the response time

but suffers from processing heavy shared joins at runtime.

Individually, both reuse and work sharing fail to process large

workloads interactively but still make complementary contribu-

tions. Thus, it is attractive to combine the two approaches to exploit

their cumulative benefit. However, naively reusing materialized

results in a work-sharing database as we would in a query-at-a-time

database brings limited benefit and can even degrade performance

("Work-sharing + Reuse" in Figure 1). Reuse in a work-sharing en-

vironment is ineffective because i) it eliminates upstream shared

operators only when their results are not required by any down-

stream computation, ii) as it rewrites only queries that the used

materialized results subsume, mismatching (i.e., non-subsumed)

queries may recompute, fully or partially, the reused results, hence

decreasing benefit – mismatches become increasingly likely as con-

currency is increased, especially during workload shifts – and iii) it

severely amplifies processing for shared filters.

To enable interactive responses for large parameterized batches,

we introduce ParCuR (Partition-Cut-Reuse), a novel framework

that harmonizes reuse with work sharing. To address the limited ef-

fectiveness of reuse in work-sharing environments, ParCuR adapts

materialization and reuse techniques across three axes:

1
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Cut: Work sharing violates the assumptions of traditional subex-

pression selection [15, 40]; thus, existing solutions fail to minimize

processing. To increase the impact of reuse, ParCuR introduces

novel materialization and reuse policies that make decisions based

on the eliminated shared operators in the work-sharing setup. As

eliminating each shared operator depends on downstream deci-

sions, ParCuR introduces the concept of cuts. Cuts represent sets of
materialized subexpressions that act synergistically in eliminating

more upstream operators. The policies use cuts when evaluating

which results to materialize or reuse. ParCuR proposes approxima-

tion algorithms for materialization as well as a cost-based reuse

algorithm that maximizes processing-time savings.

Reuse: ParCuR focuses on making reuse efficient, and thus it

is imperative to reduce the high processing time for shared fil-

ters. To this end, it builds and uses access methods on materialized

subexpressions. By building access methods on materialized subex-

pressions based on frequent predicates, and by using the access

methods at runtime, ParCuR evaluates frequent filters for one batch

of tuples at a time, thus amortizing the required processing.

Partition: To increase the usability of materialized results in case

of mismatches, e.g., during workload shifts, ParCuR uses partial

reuse. It uses the fragments of materialized results that are relevant

for each query batch at hand and performs any additional recom-

putation only as needed, thus relaxing the subsumption constraint;

it eliminates shared operators for all queries for the data ranges

that materialized results cover. To efficiently identify and access the

relevant fragments and the base data for the recomputation, Par-

CuR uses partitioning. Nevertheless, by materializing and reusing

at the partition-granularity, it creates a dependency between the

storage footprint and the partitioning scheme: such materializa-

tions may include tuples that are rarely useful if the partition is

misaligned with the predicates of the corresponding queries. Hence,

to maximize reuse while minimizing footprint, ParCuR introduces

a novel partitioning algorithm that clusters together data that are

accessed by similar subexpressions and hence aligns partitions with

predicate-subexpression combinations.

ParCuR incorporates the above techniques in a two-phase frame-

work: i) an offline tuner that optimizes ParCuR’s state (i.e., parti-

tions, materialized results, access methods) for a target workload

and ii) an online executor that, by exploiting the available state, min-

imizes the processing time for query batches arriving at runtime.

By adapting and exploiting the available state, ParCuR makes reuse

efficient and effective in work-sharing environments. As Figure 1

demonstrates, ParCuR drastically reduces batch response time. The

experiments show that ParCuR outperforms work sharing by 6.4×
and 2× in the SSBM and TPC-H benchmarks, respectively.

We make the following contributions:

• Choosing materializations using QaT heuristics is ineffec-

tive and uses the storage budget suboptimally. We propose

a family of materialization policies that, by adapting to the

workload’s sharing opportunities, improve time savings for

the same budget.

• Work-sharing decisions and access patterns affect the bene-

fit of reuse. We propose a cost-based optimization strategy

that chooses when and which materializations to inject into

each batch’s plan such that response time is minimized.

• Naively reusing materializations in work-sharing databases

can increase response time considerably. Instead, we pro-

pose that materialization should be accompanied by access

methods that enable data skipping and filter skipping.

• Increasing the usability of materialized results in case of

mismatches requires partial reuse. Partition-level material-

ization and execution enable efficient partial reuse at the ex-

pense of storage overhead. We propose a novel partitioning

scheme that maximizes reuse while minimizing redundant

materialization by aligning partitions to workload patterns.

2 REUSE IN SHARED EXECUTION
We provide an overview of the challenges in reusing materializa-

tions during shared execution.We first briefly present work-sharing

concepts and motivate reusing materializations to reduce recompu-

tation, then highlight the performance pitfalls that reuse introduces

when combined with work sharing, and finally outline our solu-

tions. For ease of presentation, we use the following batch as a

running example:

Q1: SELECT SUM(X) FROM A,B,C,D WHERE expr1
Q2: SELECT SUM(X) FROM A,B,E WHERE expr2

2.1 Shared Execution
Work-sharing databases accelerate query batches by exploiting

overlapping work across queries. To do so, they rely on i) the global
plan and ii) the Data-Query model.

Global plan: The global plan expresses sharing opportunities

among different queries. It is a directed acyclic graph (DAG) of

relational operators that process tuples for one or more queries,

and multi-cast their results to one or more parent operators. Figure

2 shows the global plan for Q1 and Q2. For ease of reference, each

operator is labeled with a number. Operator 2 processes 𝐴 ⊲⊳ 𝐵 for

both queries, and sends results to operators 3 and 8, which serve

Q1 and Q2, respectively. At the two roots, the global plan produces

the results for Q1 and Q2. By processing each operator of the global

plan only once, the database shares work across queries and reduces

the overall processing time.

Data-Query model: The Data-Query model enables efficient

sharing between queries with different selection predicates. Sharing

through query re-writing that uses standard relational operators

and filters the union of the predicates is expensive as i) it produces

and processes redundant tuples, and ii) filters data several times

within the plan [22]. For example, operator 2 can join a “probe”

tuple belonging only to Q1 with a “build” tuple only belonging to

Q2 and filter it out afterwards. The Data-Query model addresses

these two inefficiencies: it annotates each tuple with a query-set that
indicates to which queries the tuple contributes. Then, specialized

shared operators process both the actual tuples and the query-

sets. This way the database tracks membership for intermediate

results, and eliminates redundant tuples early. Therefore, with Data-

Query model: i) the global plan shares work on tuples that are

common across some but not all queries, and ii) the operators can

immediately drop tuples that do not belong to any query.
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Figure 2: Motivational example: work sharing introduces
novel challenges for reuse

2.2 Recomputation Bottleneck
When using work sharing, processing more queries increases the

response time sublinearly, and thus, the total processing time is

reduced compared to QaT execution. However, for each submitted

query batch, global plan execution always starts from a clean slate.

Data flows from the input tables to each query’s output, and all

shared operators of the global plan are fully processed from scratch.

Recomputation of previously “seen” expressions can be criti-

cal as the additional processing for handling query-sets renders

shared operators particularly time-consuming. For example, shared

filters and joins require one or more query-set intersections, the

cost of which is increased as a function of the number of queries.

Furthermore, shared filters are not simple comparisons but are

implemented as joins with predicates using the predicate indices.

All in all, as global plans often consist of tens of operators, pro-

cessing accumulates and prevents providing results within a tight

time window. Therefore, to offer interactivity, we need to reduce

the required computations for each batch.

2.3 Pitfalls of Combining Reuse and Work
Sharing

Analytical databases reduce runtime computations by reusing pre-

computed results. However, we observe that using materializations

in work-sharing environments exhibits a set of properties that have

not been studied before and which make reuse inefficient. Namely,

these properties are: i) shared cost, ii) synergy, iii) filter amplification,
and iv) risk of miss. We elaborate on each of these properties.

Shared cost:QaT cost models are inaccurate in work-sharing environ-
ments. Work sharing affects both which operators reuse eliminates

and their relative importance. On the one hand, reuse eliminates

upstream operators only as long as their results are not required by

other remaining downstream operators. For example, reusing the

results of operator 4 eliminates operators 3 and 4, but operator 2 is

still required for Q2. On the other hand, work sharing across queries

diminishes the importance of frequency of occurrence for opera-

tors; the savings depend more on the total number of Data-Query

tuples processed by the shared operator rather than the number of

participating queries. This is contrary to the assumptions of tradi-

tional cost models for materializing intermediates, which assume

that reuse eliminates all upstream costs and which simply add up

the benefit for each affected query.

Synergy: The benefit of individual materializations is amplified.Ma-

terialization decisions affect each other’s results differently than

they do in single-query plans. Reuse in single-query plans results

in diminishing returns. For example, reusing the results of operator

4 in the original plan eliminates joins 3 and 4, whereas reusing

the same results in a rewritten plan that already uses operator 3

only eliminates join 4. This observation is critical for the design of

heuristic materialization algorithms that are based on submodular-

ity. However, diminishing returns are not necessarily the case in

global plans. Consider the example where we reuse results for op-

erators 3 and 8. We observe a counter-intuitive effect: individually,

they eliminate one join each, but together the benefit is amplified,

and they eliminate 3 joins. This effect, which we refer to as synergy,
marks a departure from traditional materialization and reuse.

Filter amplification: Shared filters over materializations dominate
the total processing time. When injecting a materialization into

a global plan, the work-sharing database needs to process filters

from all the tables participating in the computation. For example, if

the database reuses the results of the subquery corresponding to

operator 4, the global plan needs to process 4 shared filters from

tables 𝐴, 𝐵, and 𝐶 . Then, the processing time for filters is amplified

for two reasons: i) materializations can have a significantly larger

cardinality than small dimension tables, and ii) filters must process

every materialization where the corresponding table participates

(e.g., filters from 𝐴 are processed on the materializations of both 4

and 8). In some cases, reuse deteriorates performance compared to

processing the batch from scratch using work sharing.

Risk of miss: The probability that the materialization covers all
accessed data decreases with the number of queries. Reuse typically
requires that the materialization fully subsumes the subquery that

it eliminates. Similarly, the materialization needs to subsume all

participating queries to eliminate subplans in global plans. For ex-

ample, eliminating operator 2 by reusing its result requires that

both Q1 and Q2 can be answered using the materialization. Assume

that the materialization only covers expr1 and expr1 defines a subset
of expr2: then, even if Q1 is answered using the materialized subex-

pression, Q2 fully recomputes the shared operator’s result already

and thus reuse brings no benefit compared to shared execution.

Requiring full subsumption for materialized subexpressions has a

high risk of mismatch, especially in case of workload shifts.

2.4 Harmonizing Reuse and Work Sharing
To significantly reduce their runtime computations, work-sharing

databases need to address inefficiency in reuse. In this work, we

harmonize work sharing and reuse: we redesign, based on the

above-mentioned properties, the techniques for materializing and

reusing precomputed results such that we maximize eliminated

computations and minimize reuse overhead. Harmonization takes

place across three axes: i) materialization and reuse policies which

address shared cost and synergy, ii) access methods for materializa-

tions which address filter amplification, and iii) partial reuse, which

addresses the risk of miss.

Materialization and reuse policies: Due to shared cost and syn-

ergy, algorithms for selecting materializations or injecting mate-

rializations into plans make suboptimal decisions. Work sharing

renders their cost models inaccurate and violates common sub-

modularity assumptions. Hence, harmonization requires novel ma-

terialization and reuse policies that, by taking into account both

shared cost and synergy, select materializations that bring higher

processing time reduction, given the same budget. We introduce a

methodology that evaluates cost reduction using i) the eliminated

3
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Materialization policy ✓ ✓
Access methods ✓
Partitioning ✓
Reuse policy ✓ ✓

Data & Filter skipping ✓
Partition-oriented execution ✓

Table 1: Challenges (columns) and mechanisms (rows) that
ParCuR uses to harmonize reuse and work sharing. Brown
rows: offline mechanisms, purple rows: online mechanisms.

shared cost in global plans and ii) the novel concept of cuts, that

is, sets of materializations that exhibit synergy. We formulate the

problem of choosing materializations for a target workload as a

variant of the subexpression selection problem [15, 40]. We show

that the materialization problem can be reduced, using cuts, into a

Submodular Cover Submodular Knapsack (SCSCK) problem [14],

for which there exists a family of approximation algorithms. Af-

terward, we address selecting which materializations to reuse and

when in shared execution. We propose a reuse optimization pass

that, at runtime, injects into a global plan the materialized subex-

pressions that maximize cost savings (i.e., eliminated computation

minus filtering overhead) for the selected subexpressions.

Access methods: Filter amplification limits the applicability of

reuse as it shrinks the net benefit and may even deteriorate perfor-

mance. Efficient reuse requires that the processing time for shared

filters over materializations is decreased. We reduce processing

time for filters using suitable access methods for the workload at

hand. By building and using access methods, ParCuR enables shared

execution to evaluate shared filters over one block of tuples at a

time instead of processing them on a tuple-by-tuple basis, and thus

to amortize the overhead. We build access methods for the target

workload through partitioning and then use the created access

methods to eliminate filters at runtime (Section 4.1).

Partial reuse: Strict subsumption limits the applicability of reuse.

For this reason, ParCuR opts for partial reuse: to exploit available

materializations for the parts of the data that they cover. During

execution, ParCuR can answer each query by combining computa-

tions from parts of different materializations and even from parts

of the base data. Computations on disjoint parts of the data that

consist of filters, projections, join probes, and aggregations can

be combined to produce the full result [37]. Our insight is that, to

enable composable computations from different parts of data, plan-

ning and execution need to take place at partition-granularity. In

addition, the reusability of materializations is maximum when they

fully cover the data for a set of partitions. For those partitions, they

always subsume the matching partition-local computations and can

eliminate the corresponding processing. Hence, ParCuR performs

materialization and reuse at partition-granularity. The materializa-

tion policy selects for each materialization a set of partitions to fully

Data Partitions

Partitioning Materialization 
Policy

Access Method
Creation

+ Materializations + Access 
Methods

OFFLINE

(a)

Partitioned
Execution Reuse Policy Data & Filter

Skipping

ONLINE

⨝

⨝
⨝⨝

SCAN SCAN SCANSCANSCAN

⨝
SCANSCAN SCAN

⨝
SKIP SCAN SKIP

for each partition

(b)

Figure 3: ParCuR’s workflow in a) the offline tuner and b)
the online executor

cover and injects materializations into each partition’s global plan

at runtime. However, this scheme creates a dependency between

partitioning and the storage overhead for covering the target work-

load; storage overhead is minimum when partition boundaries are

aligned with the queries that the materializations subsume. Thus,

due to this dependency, data needs to be partitioned such that each

partition’s tuples are required by the same computations, which,

in turn, require the same materializations. We propose the metric

of homogeneity to capture the similarity of computations across

each partition’s tuples. ParCuR introduces a partitioning scheme

that, by splitting data such that homogeneity is maximized, maps

each computation to the data that it concerns and reduces wasteful

materialization. ParCuR uses the selected partitions at runtime in

a partition-oriented execution model to enable partial reuse and

achieves cost savings that are proportional to the overlap between

the runtime and tuning workload.

2.5 Putting It All Together
We present ParCuR, a framework that enables shared execution

to effectively take advantage of materialized subexpressions by

combining the proposed solutions.

ParCuR’s architecture comprises two parts: the tuner, and the

executor. The tuner operates offline. It analyzes a target workload

made of historical query batches and adapts the framework’s state

by employing the ParCuR’s offline mechanisms: i) it partitions the

data based on the access patterns of the target workload, ii) it ma-

terializes a set of subexpressions for the given partitions, and iii)

it builds new access methods for the materialized subexpressions

using finer-grained partitioning. Then, given the available partition-

ing, materialized subexpressions, and access methods, the executor

processes each query batch arriving at runtime: i) it performs shared

execution at the level of the available partitions, ii) it decides when

and where to reuse materialized subexpressions for each partition,

and iii) it uses the available access methods to reduce filter costs

using data and filter-skipping. Figure 3 illustrates the end-to-end

workflow for both the offline tuner and the online executor. We

elaborate on each of these mechanisms in Sections 3 and 4. Note

that the query batches processed at runtime can be arbitrarily dif-

ferent from historical batches both in terms of access patterns and

global plans. In all cases, ParCuR opportunistically uses the existing

state to reduce the response time of runtime batches.

3 TUNING PARCUR’S STATE
By analyzing a target workload that consists of a sequence of query

batches, the tuner repartitions the data, materializes a set of se-

lected subexpressions, and builds access methods on the materi-

alized subexpressions. Tuning takes place offline. After tuning is

done, the partitions, the materialized subexpressions and the access

4
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Figure 4: Two-query example for subquery vectors

methods are exposed to the executor at runtime, which uses them

to eliminate recurring computation in subsequent query batches.

In this section, we present each of the steps in the tuner’s work-

flow. Each step’s output is the input for the next step in line: parti-

tioning chooses the boundaries for materializing subexpressions

and the materialization policy selects the subexpressions on which

to build access methods. We first present the partitioning algorithm

(Section 3.1), then introduce the materialization policy (Section 3.2)

and finally discuss access method construction (Section 3.3).

3.1 Workload-driven Partitioning
The first step of ParCuR’s tuner is to partition the data in a way that

maximizes the utility of subsequent materializations. To differenti-

ate between this partitioning and any additional data reorganization

for building access methods, we name the first step’s partitioning

as 1st-level partitioning and any further partitioning as 2nd-level.
For partition-granularity materialization to be budget-efficient,

all tuples should be processed by similar query patterns, i.e., most of

their downstream computation should be the same. Therefore, Par-

CuR employs a partitioning scheme that clusters tuples according

to query patterns and materializes subexpressions for each partition

independently.

Such a partitioning scheme offers three benefits: i) if the query

patterns remain the same, materialized subexpressions are almost

fully reused, and space is not wasted, ii) materialization is special-

ized for the sharing decisions of each partition’s query pattern, and

iii) for the case of partial reuse during a workload shift, performance

degradation becomes proportional to the magnitude of the shift.

To cluster together data that is processed by similar query pat-

terns, we keep track of processing history for a sample of tuples

by maintaining a subquery-vector for each tuple. We consider all

possible subqueries 𝑒1, 𝑒2, . . . , 𝑒𝑚 , that appear in a set of historical

batches, and mark to which of them each tuple belongs. By sub-
queries, we mean all the join subexpressions (and their reorderings),

that exist in each batch, and involve the fact table. For example,

considering a batch with two queries, 𝐴 ⊲⊳ 𝐵 ⊲⊳ 𝐶, 𝐴 ⊲⊳ 𝐵 ⊲⊳ 𝐷

and 𝐴 as the fact table, leads to the subqueries depicted in Figure

4a. We represent subexpressions in different batches as separate

subqueries because they do not actually co-occur. Using subqueries

is advantageous as it exposes similarities that do not depend on a

specific execution plan and naturally represents co-occurrence in

the same batch.

We then use the subquery-vectors in order to formulate a tuple-

clustering problem based on homogeneity. We assume a matrix𝑊 ,

where the 𝑖𝑡ℎ row of it corresponds to the subquery-vector of the 𝑖𝑡ℎ
tuple: If at least one query with subquery 𝑒 𝑗 accesses the 𝑖𝑡ℎ tuple,

𝑊𝑖, 𝑗 = 𝑤 (𝑒 𝑗 ), where 𝑤 (𝑒 𝑗 ) is a weight assigned to 𝑒 𝑗 . Otherwise,

𝑊𝑖, 𝑗 = 0. In our implementation, to increase the relative importance

of larger subqueries to homogeneity, we set𝑤 (𝑒 𝑗 ) = |𝑒 𝑗 |, where |𝑒 𝑗 |
is the number of tables participating in 𝑒 𝑗 . Alternatives assignments

can also achieve a similar result.

Given a set of tuples 𝑇 , we formally define homogeneity as:

𝐻 (𝑇,𝑊 ) =
∑︁
𝑡 ∈𝑇

∑𝑚
𝑗=1

𝑊𝑡, 𝑗

𝑚𝑎𝑥 (

∑𝑚
𝑗=1

𝑤 (𝑒 𝑗 ) × 𝑢(

∑
𝑡 ∈𝑇𝑊𝑡, 𝑗 ), 1)

where 𝑢(𝑥) is the step function with 𝑢(𝑥) = 1 when 𝑥 > 0 and 0

otherwise. Homogeneity assigns a score to each tuple in 𝑇 based

on the subqueries that access the tuple and is defined as the sum of

scores. Each tuple’s score is the sum of weights for the subqueries

that access tuple 𝑡 over the sum of weights for the subqueries that

access at least one tuple in𝑇 . Hence, the complexity for computing

𝐻 (𝑇,𝑊 ) is 𝑂(𝑚 × |𝑇 |). The score is maximum (i.e., equals 1) if all

the subqueries that access at least one tuple in 𝑇 also access 𝑡 . The

intuition is that homogeneity is maximum when all tuples in 𝑇 are

accessed by the exact same subqueries. In that case, the utilization

of materializations is also maximum; assuming that a subquery’s

results are materialized and that the historical batches recur as is,

reuse exploits all the tuples in the materialization, and no tuple is

redundant.

Homogeneity-based partitioning is defined as finding the par-

titions {𝑝∗
1
, 𝑝∗

2
, . . . , 𝑝∗𝑛} that maximize the aggregate homogeneity:

{𝑝∗
1
, 𝑝∗

2
, . . . , 𝑝∗𝑛} = arg max

{𝑝1,...,𝑝𝑛 }

𝑛∑︁
𝑖=1

𝐻 (𝑝𝑖 ,𝑊 ) 𝑠 .𝑡 . ∀𝑝𝑖 |𝑝𝑖 | ≥ 𝑃𝑆𝑚𝑖𝑛

where 𝑃𝑆𝑚𝑖𝑛 is the minimum allowed partition size. Homogeneity-

based partitioning finds partitions such that, in each partition, the

tuples are accessed by almost the same set of subqueries, and thus,

barring a workload shift, the utilization of materializations is high.

The partition size constraint ensures that the solution avoids the

trivial optimal solution where each tuple forms its own partition.

To efficiently compute a solution to homogeneity-based parti-

tioning, we use a space-cutting approach that, similar to [38], forms

a tree of cuts in the space of table attributes. Each internal node

corresponds to a logical subspace of the table and contains a pred-

icate based on which this subspace is further split: the left child

corresponds to the data that satisfies the predicate, whereas the

right child to the data that does not. Finally, the leaves of the tree

correspond to data partitions, which are the quanta for materializa-

tion. The advantage of the space-cutting approach is that it enables

routing queries to required partitions based on the predicates of

the splits and the queries.

To solve the partitioning problem, we use the greedy Algorithm

1. The algorithm runs on a uniform sample of the tuples to keep

runtime monitoring overhead low. ParCuR computes the sample’s

query pattern matrix by monitoring data accesses across batches

and by recording the vector of subqueries for the sample’s tuples.

When triggered, the greedy algorithm computes the change in the

objective function for each candidate cut, that is, a predicate that

intersects with the partition at hand (lines 5-9), and finds the locally

optimal cut that maximizes the aggregate homogeneity (lines 10-

11). Then, the space is partitioned based on the locally optimal

cut, and the greedy algorithm is recursively invoked for the two

children subspaces and the respective sample tuples (lines 13-16).
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Algorithm 1: Homogeneity-based Partitioning

1 Function PARTITION(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛,𝑊 , 𝑐𝑢𝑡𝑠, 𝑃𝑆𝑚𝑖𝑛) :
2 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛𝑢𝑙𝑙 ; 𝑏𝑒𝑠𝑡 = 𝑛𝑢𝑙𝑙 ; 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑛𝑢𝑙𝑙 ;

3 𝑠𝑐𝑜𝑟𝑒 = 𝐻 (𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛.𝑠𝑎𝑚𝑝𝑙𝑒,𝑊 ) ;

4 for 𝑐𝑢𝑡 ∈ 𝑐𝑢𝑡𝑠 do
5 if 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, 𝑐𝑢𝑡 ) then
6 𝑡𝑝, 𝑓 𝑝 = 𝑔𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, 𝑐𝑢𝑡 ) ;

7 if 𝑡𝑝.𝑠𝑖𝑧𝑒 < 𝑃𝑆𝑚𝑖𝑛 𝑜𝑟 𝑓 𝑝.𝑠𝑖𝑧𝑒 < 𝑃𝑆𝑚𝑖𝑛 then
8 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;

9 𝑐𝑢𝑟𝑟 = 𝐻 (𝑡𝑝.𝑠𝑎𝑚𝑝𝑙𝑒,𝑊 ) + 𝐻 (𝑓 𝑝.𝑠𝑎𝑚𝑝𝑙𝑒,𝑊 ) ;

10 if 𝑏𝑒𝑠𝑡 == 𝑛𝑢𝑙𝑙 𝑜𝑟 𝑐𝑢𝑟𝑟 > 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 then
11 𝑏𝑒𝑠𝑡 = 𝑐𝑢𝑡 ; 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝑐𝑢𝑟𝑟 ;

12 if 𝑏𝑒𝑠𝑡 == 𝑛𝑢𝑙𝑙 𝑎𝑛𝑑 𝑏𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 > 1.01 × 𝑠𝑐𝑜𝑟𝑒 then
13 𝑡𝑝, 𝑓 𝑝 = 𝑔𝑒𝑡𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠(𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, 𝑏𝑒𝑠𝑡 ) ;

14 𝑡𝑟𝑒𝑠 = 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁 (𝑡𝑝,𝑊 , 𝑐𝑢𝑡𝑠, 𝑃𝑆𝑚𝑖𝑛) ;

15 𝑓 𝑟𝑒𝑠 = 𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁 (𝑓 𝑝,𝑊 , 𝑐𝑢𝑡𝑠, 𝑃𝑆𝑚𝑖𝑛) ;

16 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑁𝑜𝑑𝑒(𝑏𝑒𝑠𝑡, 𝑡𝑟𝑒𝑠 .𝑓 𝑟𝑒𝑠) ;

17 else 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐿𝑒𝑎𝑓 () ;

18 return 𝑜𝑢𝑡𝑝𝑢𝑡 ;

The greedy algorithm stops when either the relative improvement

from the locally optimal cut drops below a threshold, which we set

at 1% (line 7), or all candidate cuts violate the minimum partition

size for resulting partitions (lines 7-8).

Let 𝑆𝑝 the sample per partition and 𝑆 the entire sample. The

algorithm’s complexity depends on i) the number of recursive in-

vocations, ii) the complexity of 𝐻 (𝑆𝑝 ,𝑊 ), which is𝑂(𝑚 × |𝑆𝑝 |), and
iii) the number |𝐹 | of distinct filters in the tuning workload. As

the minimum partition size is 𝑃𝑆𝑚𝑖𝑛 , we can have at most
|𝑆 |

𝑃𝑆𝑚𝑖𝑛

leaf-partitions, and hence
2×|𝑆 |
𝑃𝑆𝑚𝑖𝑛

− 1 = 𝑂(
|𝑆 |

𝑃𝑆𝑚𝑖𝑛
) invocations. Thus,

the complexity of Algorithm 1 is: 𝑂(
|𝑆 |

𝑃𝑆𝑚𝑖𝑛
×𝑚 × |𝑆 | × |𝐹 |).

Homogeneity-based partitioning results in more efficient use

of the storage budget compared to data access-based partitioning

schemes, such as Qd-tree [38].

3.2 Materialization Policy
1st-level partitioning assumes that query patterns represent the

overall workload and thus recur in future batches. To eliminate

recomputation in such cases, ParCuR materializes subexpressions

on a per 1st-level partition basis.

Due to the interference between reuse andwork sharing, a global-

plan-aware materialization policy is required. Also, in ParCuR the

policy should consider that partitions process different query pat-

terns. Hence, ParCuR relies on a new formulation of the subexpres-

sion selection problem, which is: i) sharing-aware, and ii) works on

partition-wise global plans. The optimal solution differs from the one

of the classical problem. We call this new problem Multi-Partition
Subexpression Selection for Sharing (MS3). We define the Historical
Workload Graph, which is the input of MS3, and then MS3 itself.

Definition 3.1 (Historical Workload Graph). — Given a fact table

𝑇 , a partitioning {𝑝1, 𝑝2, .., 𝑝𝑛} of 𝑇 , and batches {𝑄1, 𝑄2, . . . , 𝑄𝑚},
the historical workload graph 𝐺 is a graph composed of connected

components 𝐺𝑖, 𝑗 , 𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}, where 𝐺𝑖, 𝑗 is the
global plan for 𝑄 𝑗 over 𝑝𝑖 . In the global plan, nodes represent

operators (including a pseudo-operator for 𝑇 ) and edges represent

producer-consumer relationships.

Definition 3.2 (MS3). — Let 𝑅(𝑐) be the maximum cost reduction

that reuse can incur when executing the global plans of the his-

torical workload graph 𝐺 with an available set of materialized

subexpressions 𝑐 , and 𝐵(𝑐) the budget required for materializing 𝑐 .

If B is the total memory budget, MS3 is defined as:

max

𝑐
𝑅(𝑐), s.t.: 𝐵(𝑐) ≤ B

MS3 is a hard problem and hence it is time-consuming to compute

a tractable exact solution. To solve it, we first prove a reduction to

Submodular Cover Submodular Knapsack (SCSK) problem [14] and

then show how we can use approximate algorithms for SCSK to

choose to materialize a set of expressions that achieve a high cost

reduction with approximation guarantees.

3.2.1 Reduction to SCSK. Let𝑈 be a set and 𝑓 , 𝑔 : 2
𝑈 → R be two

submodular functions
2
, then SCSK is the optimization problem

max

𝑆⊂𝑈
𝑔(𝑆), 𝑠 .𝑡 . 𝑓 (𝑆) ≤ 𝐵

To reduce MS3 to SCSK, cost savings in MS3 should be submod-

ular, i.e., adding more materialized subexpressions should result in

diminishing returns. While this holds in QaT execution, where each

materialization reduces the marginal benefit of other conflicting

materializations, it does not hold in shared execution. We observe

that shared execution benefits more from materializations in the

same path of the global plan where synergy increases cost savings.

The key idea for reducing MS3 to a submodular optimization

problem is to materialize subexpressions in groups. We notice that

computing cost savings for groups gives us more accurate estimates

for the eliminated upstream computations. In addition, synergy

between groups is always captured by their super-group, i.e., a
group that contains their union.

We formulate useful groups of materializations by introducing

the concept of cuts. Intuitively, in a given global plan, a cut is a

set of subexpressions that, if materialized, eliminate all upstream

operators between (inclusive) the operators that produce them

and a common ancestor, the anchor. For example, in Figure 2, the

cut composed of operators 3 and 8 also eliminates the upstream

operators 1 and 2, which are also anchors. Formally, we define cuts

and anchors as follows:

Definition 3.3 (Cuts and anchors). — Let 𝐺 be the historical work-
load graph. A set of nodes 𝑐 ⊂ 𝑉 is defined as a cut with respect to
anchor 𝑎 ∈ 𝑉 if:

• 𝑎 is an ancestor of every 𝑣 ∈ 𝑐 .
• Every descendant of 𝑎 is either i) an ancestor of at least one

node 𝑣 ∈ 𝑐 , or ii) a descendant of exactly one node 𝑣 ∈ 𝑐 .
We represent the set of all cuts in 𝐺 as 𝐶𝑈𝑇𝑆(𝐺), and for all 𝑐 ∈
𝐶𝑈𝑇𝑆(𝐺) we define 𝐵𝐶(𝑐, 𝑎) as the nodes between (inclusive) the cut’s
nodes and anchor 𝑎. The shorthand 𝐵𝐶(𝑐) implies using the minimal
anchor (i.e., an anchor whose predecessor is not an anchor for 𝑐).

Choosing cuts to materialize so as to maximize the eliminated

cost in their BC sets is related but not identical to 𝑀𝑆3. The cost

in 𝐵𝐶 sets is not always equal to the cost reduction from the same

2
Submodularity formalizes diminishing returns. Specifically, a function ℎ is defined as

submodular if 𝑆 ⊂ 𝑆 ′ ⇒ ℎ(𝑆 ∪ {𝑠 }) − ℎ(𝑆) ≥ ℎ(𝑆 ′ ∪ {𝑠 }) − ℎ(𝑆 ′).
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materializations in𝑀𝑆3, because𝑀𝑆3 implicitly includes the sav-

ings from super-cuts, that is the union of smaller materialized cuts.

However, we prove that solutions in the cut selection problem can

be enriched such that they are both solutions to cut selection and

𝑀𝑆3 with equal savings. Furthermore, we prove that cut selection
is an SCSK problem, and thus we can solve it using approximate

algorithms. Based on these two properties, cut selection gives a

solution to 𝑀𝑆3 with better or equal approximation factor than

the one given for SCSK. In the following paragraphs, we formally

define cut selection and prove the mentioned properties.

First, we introduce some required notation:

Definition 3.4 (Domain and Enrichment). — Let 𝑆 be a set of cuts
to materialize. We define the domain of 𝑆 as the set

𝑑(𝑆) = {𝑣 .𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 |𝑣 ∈ (

⋃
𝑐∈𝑆

𝑐)}

and the enrichment of 𝑆 as the set
𝑒(𝑆) = {𝑐 |𝑐 ∈ 𝐶𝑈𝑇𝑆(𝐺) 𝑎𝑛𝑑 ∀𝑣 ∈ 𝑐(𝑣 .𝑠𝑢𝑏𝑞𝑢𝑒𝑟𝑦 ∈ 𝑑(𝑆))}

The domain represents which results 𝑆 materializes, and the enrich-
ment represents all cuts that are materialized by materializing 𝑆 .
Definition 3.5 (Cost Reduction and Budget). — Let 𝑆 be a set of
cuts. Also, let 𝑐𝑜𝑠𝑡 (𝑜𝑝) be the processing cost for an operator 𝑜𝑝 in the
global plan. We model the cost reduction due to materializing 𝑆 as:

𝑅(𝑆) =
∑︁
𝑜𝑝∈𝑂

𝑐𝑜𝑠𝑡 (𝑜𝑝), 𝑤ℎ𝑒𝑟𝑒 𝑂 =
⋃
𝑐∈𝑆

𝐵𝐶(𝑐)

and the required materialization budget as 𝐵(𝑆) =
∑
𝑣∈𝑑(𝑆)

𝐵({𝑣}).
𝑅(𝑆) is equal to the cost of operators 𝑂 that are eliminated by materi-
alizing the cuts in 𝑆 . Each cut eliminates the shared operators between
the cut and the minimal anchor and, by definition, computing 𝑂 as
the union of operators accounts for overlaps between the operators
that are eliminated by different cuts.
𝐵(𝑆) equals the total budget required for materializing the results

of the cuts in 𝑆 . 𝑑(𝑆) is by definition the results that 𝑆 materializes.
Definition 3.6 (Reduced Workload Graph). — Let 𝑆 be a set of cuts.
We define the reduced workload graph of 𝑆 as

𝐺(∅) =< 𝑉 (∅), 𝐸(∅) >= 𝐺

𝐺(𝑆) =< 𝑉 (𝑆), 𝐸(𝑆) >= 𝐺 [𝑉 −
⋃
𝑐∈𝑆

𝐵𝐶(𝑐)]

where 𝐺 [𝑉 ′] is the induced subgraph of 𝐺 for vertices 𝑉 ′.
The reduced workload graph represents the global plans for the

historical query batches after materializing and reusing the cuts in 𝑆 .
We define cut selection problem as follows:

Definition 3.7 (Cut Selection). — Cut selection is defined as the
optimization problem of finding a set of cuts 𝑆 such that:

𝑚𝑎𝑥𝑅(𝑆), s.t.: 𝐵(𝑆) ≤ 𝐵

Using the above definitions, we prove the following theorems:

Theorem 1. Cut selection is a SCSK problem.

Proof. We prove that 𝑅 and 𝐵 are submodular. For a set of cuts

𝑆 and a cut 𝑐 , it holds that:

𝑅(𝑆 ∪ {𝑐}) − 𝑅(𝑆) =
∑︁

𝑜𝑝∈𝑂(𝑆)

𝑐𝑜𝑠𝑡 (𝑜𝑝) 𝑠 .𝑡 . 𝑂(𝑆) = 𝐵𝐶(𝑐) ∩𝑉 (𝑆)

and

𝐵(𝑆 ∪ {𝑐}) − 𝐵(𝑆) =
∑︁

𝑚∈𝑀(𝑆)

𝐵({𝑚}) 𝑠 .𝑡 . 𝑀(𝑆) = 𝑑({𝑐}) − 𝑑(𝑆)

Let S, S’ be two sets of cuts such that 𝑆 ⊂ 𝑆 ′. Then,

𝑅(𝑆 ∪ {𝑐}) − 𝑅(𝑆) =
∑︁

𝑜𝑝∈𝑂(𝑆)

𝑐𝑜𝑠𝑡 (𝑜𝑝)

and

𝑅(𝑆 ′ ∪ {𝑐}) − 𝑅(𝑆 ′) =
∑︁

𝑜𝑝∈𝑂(𝑆 ′)

𝑐𝑜𝑠𝑡 (𝑜𝑝)

However, 𝑉 (𝑆 ′) ⊂ 𝑉 (𝑆) and thus 𝑂(𝑆 ′) ⊂ 𝑂(𝑆). Therefore,

𝑅(𝑆 ∪ {𝑐}) − 𝑅(𝑆) ≥ 𝑅(𝑆 ′ ∪ {𝑐}) − 𝑅(𝑆 ′)

Similarly,

𝐵(𝑆 ∪ {𝑐}) − 𝐵(𝑆) =
∑︁

𝑚∈𝑀(𝑆)

and

𝐵(𝑆 ′ ∪ {𝑐}) − 𝐵(𝑆 ′) =
∑︁

𝑚∈𝑀(𝑆 ′)

Then, 𝑑(𝑆) ⊂ 𝑑(𝑆 ′) and thus 𝑀(𝑆 ′) ⊂ 𝑀(𝑆). Therefore,

𝐵(𝑆 ∪ {𝑐}) − 𝐵(𝑆) ≥ 𝐵(𝑆 ′ ∪ {𝑐}) − 𝐵(𝑆 ′)

Therefore, both f and g are submodular. □

Theorem 2. If 𝑆 is a solution to cut selection, then 𝑒(𝑆) is also a

solution to cut selection with 𝑅(𝑒(𝑆)) ≥ 𝑅(𝑆).

Proof. By definition, 𝑆 ⊂ 𝑒(𝑆). It also holds:

𝐵(𝑒(𝑆)) =
∑
𝑚∈𝑑(𝑆)

𝐵({𝑚}) = 𝐵(𝑆). Therefore 𝐵(𝑒(𝑆)) ≤ 𝐵 and 𝑒(𝑆) is

a solution to cut selection.

Furthermore, 𝑅(𝑒(𝑆)) =
∑
𝑜𝑝∈(

⋃
𝑐∈𝑒(𝑆 )

𝐵𝐶(𝑐))
However, 𝑆 ⊂ 𝑒(𝑆) ⇒⋃

𝑐∈𝑆
𝐵𝐶(𝑐) ⊂

⋃
𝑐∈𝑒(𝑆)

𝐵𝐶(𝑐). So, 𝑅(𝑒(𝑆)) ≥ 𝑅(𝑆). □

Theorem 3. For every 𝑒(𝑆), it holds that 𝑅(𝑑(𝑆)) = 𝑅(𝑒(𝑆))

Proof. Let 𝑆 be a set of cuts. We represent the eliminated op-

erators in the original MS3 problem when 𝑆 is materialized as 𝑡 (𝑆).

Formally, 𝑡 (𝑆) is the set of all nodes whose operators produce 𝑑(𝑆)

or all their successors belong to 𝑡 (𝑆). Then:

𝑅(𝑑(𝑆)) =
∑︁

𝑜𝑝∈𝑡 (𝑆)

𝑐𝑜𝑠𝑡 (𝑜𝑝)

We now prove that 𝑡 (𝑆) =
⋃
𝑐∈𝑒(𝑆)

𝐵𝐶(𝑐).

Let 𝑐′ ∈ 𝑒(𝑆). Then, 𝑐′ ⊂ 𝑑(𝑆), and ∀𝑣 ∈ 𝐵𝐶(𝑐′) it holds 𝑣 ∈ 𝑡 (𝑆)

and thus 𝐵𝐶(𝑐′) ⊂ 𝑡 (𝑆). It follows that

⋃
𝑐′∈𝑒(𝑆)

𝐵𝐶(𝑐′) ⊂ 𝑡 (𝑆).

Also, let 𝑎 ∈ 𝑡 (𝑆) and 𝑐𝑎 all the descendants of 𝑎 that belong to

𝑑(𝑆). Then, 𝑐𝑎 is a cut with anchor 𝑎, as the two conditions in the

definition of cuts are true: i) 𝑎 is an ancestor for all nodes in 𝑐𝑎 , and

ii) assume there is a descendant of 𝑎, 𝑎′, that is not a descendant
of any node in 𝑐𝑎 . Then, 𝑎

′
is an ancestor of at least one node in

𝑐𝑎 because 𝑎 ∈ 𝑡 (𝑆) (otherwise, the nodes in the path from 𝑎 to

𝑎′ should not be in 𝑡 (𝑆)). Therefore, 𝑐𝑎 is a cut, 𝑎 ∈ 𝐵𝐶(𝑐𝑎) and

𝑡 (𝑆) ⊂
⋃

𝑐′∈𝑒(𝑆)

𝐵𝐶(𝑐′).
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Thus 𝑡 (𝑆) =
⋃
𝑐∈𝑒(𝑆)

𝐵𝐶(𝑐) and:

𝑅(𝑑(𝑆)) =
∑︁

𝑜𝑝∈𝑡 (𝑆)

𝑐𝑜𝑠𝑡 (𝑜𝑝) =
∑︁

𝑜𝑝∈⋃𝑐∈𝑒(𝑆 )
𝐵𝐶(𝑐)

𝑐𝑜𝑠𝑡 (𝑜𝑝) = 𝑅(𝑒(𝑆))

□

3.2.2 Approximating MS3. ParCuR’s tuner chooses subexpressions
to materialize by solving cut selection for historical batches. The

selection process has two steps: i) the tuner constructs the workload

graph and computes the cuts and their corresponding 𝐵𝐶 sets, ii)

the tuner runs an algorithm for solving the cut selection instance

for the computed cuts. The subexpressions in the selected cuts are

then materialized and used in subsequent batches.

The tuner currently implements two approximate algorithms

for solving SCSK, greedy (Gr) and iterative submodular knapsack

(ISK) [14]. We briefly present the properties of the two algorithms

as presented in the work of Iyer et al. [14].

Gr: Gr is a greedy algorithm. At each step, it chooses the cut

with the highest marginal benefit that can fit in the budget and

adds it to the solution. Gr’s complexity is 𝑂(|𝐶𝑈𝑇𝑆(𝐺)|2), and in

practice it takes few msecs. Gr provides an approximation fac-

tor: 1 − (

𝐾𝑓 −1

𝐾𝑓
)
𝑘𝑓
, where 𝐾𝑓 = {𝑚𝑎𝑥𝑆⊂𝑈 {|𝑆 | |𝑓 (𝑆) ≤ 𝐵} and 𝑘𝑓 =

{𝑚𝑖𝑛𝑆⊂𝑈 {|𝑆 | |𝑓 (𝑆) ≤ 𝐵 ∧ 𝑓 (𝑆 ∪ { 𝑗}) > 𝐵}. Indeed, Gr is inefficient

when few cuts can saturate the budget.

ISK: ISK is a fixed point algorithm. In each iteration, it combines

partial enumeration with greedy expansion; it chooses between( |𝐶𝑈𝑇𝑆(𝐺 ) |
3

)
candidate solutions, where each candidate fixes the first

three cuts and chooses the rest using a greedy algorithm. At each

step, the greedy algorithm chooses the cut with the highest ratio of

marginal benefit to required budget. The solution in each iteration

affects the budget calculation for the next iteration. ISK’s complexity

is 𝑂(|𝐶𝑈𝑇𝑆(𝐺)|5) and can run for hundreds of seconds for a few

hundreds of cuts. ISK provides a constant factor 1 − 𝑒−1
for the

solution of {𝑚𝑎𝑥𝑆⊂𝑈𝑔(𝑆)|𝑓 (𝑆) ≤ 𝑏
𝐾𝑓

} and a bicriterion guarantee

if we run it with a larger budget constraint [14].

3.3 Building Access Methods
At runtime, materialized subexpressions are accessed at a per-

partition level. Nevertheless, they still need to be scanned and

filtered based on the predicates of the running queries. The process-

ing time for shared access and filtering of base and cached data can

dominate the total processing time. ParCuR further reduces both

data access- and filtering costs by reorganizing data within each

partition using multidimensional range partitioning. We refer to

this finer-grained partitioning as 2nd-level partitioning.
Multidimensional range partitioning can enable efficient data ac-

cess that reduces accesses during scans, as it enables data skipping.

Furthermore, by cutting data across values that are frequently used

in predicates, it can be used to statically evaluate frequent filters

for a whole partition. To build the partitions, we iteratively subpar-

tition data across the predicates values of one attribute at a time.

The resulting subpartitions inherit query homogeneity from the

1st-level partitioning and also reduce data-access costs. From this

point on, we differentiate the partitions derived from the 2nd-level
partitioning by calling them blocks.

4 REUSE-AWARE SHARED EXECUTION
At execution time, ParCuR takes advantage of the constructed

partitions and materialized subexpressions and optimizes query

processing in three levels: First, it uses data and filter skipping to

identify the queries that access each partition and reduces filtering

costs. Second, it adopts a partition-oriented execution paradigm

that plans and optimizes each partition independently; thus, expos-

ing different opportunities per partition. Third, ParCuR introduces

a cost-based optimization framework that chooses which material-

izations to inject into each partition’s plan.

4.1 Data and Filter Skipping
ParCuR uses 2nd-level partitioning to reduce data access and fil-

tering costs. To do so, for each block, it identifies i) which queries

process the block, and ii) which predicates have the same value

for all tuples in the block. Then, during execution, it skips 2nd-

level partitions that are not processed by any query, and eliminates

filters whose predicates are invariant across the block. Both opti-

mizations occur on both the fact table and the materializations, and

can drastically reduce batch response time.

As the data is organized by cutting the data space, each block’s

boundaries are defined by a range along each attribute. Then, if

the range is known, the above analysis can be done statically. Con-

cretely, a query’s predicate is invariant when its value range either

subsumes (always true) or does not overlap (always false) with the

block’s range. Moreover, a query skips a block if at least one of

its predicates always evaluates to false (no overlap). For example,

the query SELECT COUNT(*) FROM T WHERE x > 8 skips block

5 ≤ 𝑥 < 7, as the two ranges do not overlap. Similarly, for the same

block, the predicate of query SELECT COUNT(*) FROM T WHERE
x > 4 is true across the whole block and, thus, it is redundant to

evaluate it for every tuple.

The above logic is implemented by maintaining zone-maps [11]:

a lightweight index that stores min-max statistics for each attribute.

During the table scan, for each block, ParCuR compares the cor-

responding ranges against the shared filter predicates to identify

which queries do not overlap with this block (data skipping), and

which are satisfied by the entire block (filter skipping). The remain-

ing ambivalent filters are processed using the global plan.

4.2 Partitioned Execution
ParCuR optimizes each 1-st level partition independently to i) ex-

ploit partition-specific materializations, and ii) enable partial reuse

by decoupling planning between partitions. To do so, it introduces

a two-phase partition-oriented execution model. First, it computes

the shared state between partitions such as hash tables on dimen-

sions and data structures for aggregation. Next, it executes each

partition independently. For each partition, ParCuR identifies which

queries process the partition using the same data-skipping mecha-

nism as above. Then, it chooses a global plan that is specialized for

the queries and materializations of the partition at hand. Finally,

partial results from each partition are merged together in the output

operators such as projections, aggregations, and GROUP-BYs. To

reduce aggregation overheads, our implementation preaggregates

partial results at the thread-level. Since shared execution processes
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subqueries that comprise selection, projection, join probe, and po-

tentially aggregation operators, combining partial results produces

the final output [37].

Partial reuse is feasible because the output operators are oblivi-

ous to each partition’s planning decisions. When query patterns

recur with minor shifts, they mostly process their designated 1-st

level partitions and spill over only to few neighboring partitions.

Then, ParCuR processes the bulk of the processing using materi-

alizations and addresses spill-overs with selective computations.

Hence, in case of a workload shift, performance degradation be-

comes proportional to the magnitude of the shift, and thus ParCuR

avoids suffering a performance cliff.

4.3 Injecting Materializations in Global Plans
For each partition, ParCuR optimizes and processes a global plan

that exploits the available materializations and access methods as

well as sharing opportunities. However, making all planning deci-

sions in a unified optimization framework scales poorly. To this end,

ParCuR adopts a two-phase optimizer: it first finds the best possible

global plan that only uses work-sharing, and then, it improves it by

optimally substituting shared operators with materialized views.

4.3.1 Two-phase optimizer. Benefits from reuse and work sharing

are interdependent: the marginal benefit from reuse, if any, depends

on available sharing opportunities and, also, the opportunities from

downstream work sharing between queries are contingent on an-

swering them using the samematerialization. Thus, it is tempting to

formulate a unified optimization problem in order to find a globally

optimal plan. However, sharing-aware optimization already has a

very large search space, and thus enriching it with reuse planning

decisions is prohibitive.

To incorporate work sharing and reuse in a scalable and practical

manner, the optimizer needs to restrict the search space. ParCuR’s

optimizer focuses on ensuring better performance than pure work

sharing and on avoiding performance regression. Thus, the opti-

mizer uses two phases. In the first phase, the optimizer chooses a

baseline global plan that uses work sharing. Then, in the second

phase, the optimizer improves on the baseline plan by rewriting it

to reuse materializations. Finally, ParCuR processes the resulting

plan, which combines reuse and work sharing.

4.3.2 Reuse phase. The reuse phase is based on the observation

that reuse replaces operators from the baseline plan with filters on

materializations. Hence, the goal is to find which subexpressions,

if reused, can maximize the difference between eliminated com-

putations and filtering costs. For each cut 𝑐 , we can estimate this

difference, which we call benefit, as:

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑐, 𝑎) =
∑︁

𝑜𝑝∈𝐵𝐶(𝑐,𝑎)

𝑐𝑜𝑠𝑡 (𝑜𝑝) −
∑︁
𝑣∈𝑐

(𝑐 𝑓 × |𝑅𝐹 (𝑣)| × 𝑣 .𝑠𝑖𝑧𝑒)

where 𝑐𝑜𝑠𝑡 (𝑜𝑝) of operator 𝑜𝑝 in the baseline plan, 𝑅𝐹 (𝑣) are the

runtime filters on subexpression 𝑣 after filter-skipping in the current

partition, 𝑣 .𝑠𝑖𝑧𝑒 is the number of tuples for the subexpression in

the current partition and 𝑐 𝑓 is a constant for estimating filtering

costs per tuple as a linear function of the number of runtime filters

|𝑅𝐹 (𝑣)|. 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑐, 𝑎) represents the net benefit of reusing 𝑐 with

respect to anchor 𝑎 as the different between the cost of eliminated

operators between 𝑐 and 𝑎 and the overhead for accessing and

filtering 𝑐’s materializations. The optimizer has all this information

at the time of running the reuse phase.

In order to choose which subexpressions to reuse, the reuse

phase, which we show in Algorithm 2, performs a post-order tra-

versal of the baseline plan and transforms the plan. When visiting a

node, the traversal first processes the node’s successors and merges

their rewrite decisions (lines 4-6). Then, the algorithm finds the

best cut (i.e., the cut with the highest benefit) that can eliminate

the current node. If all of the node’s successors are eliminated or

are anchors for cuts, then the algorithm computes the best cut of

downstream subexpressions by merging the cuts of the remaining

successors (lines 9-12). If the node corresponds to a materialized

subexpressions, the algorithm also considers the cut that consists of

the node’s results (lines 15-16). Finally, if the best cut provides net

gain, the rewrite is applied immediately (lines 17-19), and otherwise

the best cut is propagated to upstream nodes.

Theorem 4. Given a plan, Algorithm 2 makes optimal view injec-

tion.

Proof. By induction on the plan size. Base step: Single-node
plan. If reuse is beneficial, the plan is rewritten. Otherwise, it is

optimal and stays as is. Induction step: If it holds for plan size ≤ 𝑘 ,
it also holds for 𝑘+1. We assume a single root in the plan. If the plan

consists of multiple connected components, then separately solving

for each component is trivially optimal. The first visited node is

the root. Each downstream subplan ≤ 𝑘 nodes, so the algorithm

minimizes the cost. Let each node have an attribute 𝑜𝑝𝑡𝑃𝑙𝑎𝑛 that

represents the optimal downstream plan and 𝐷𝐶(𝑝𝑙𝑎𝑛) be the cost

for an optimized downstream plan. Before line 17, we have:

Δ =
∑︁

𝑠∈𝑠𝑢𝑐𝑐
(𝐷𝐶(𝑠 .𝑜𝑝𝑡𝑃𝑙𝑎𝑛) − 𝐷𝐶(𝑠 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛)) + (𝑥 − 𝑦)𝑐𝑜𝑠𝑡 (𝑣)

where 𝑥,𝑦 ∈ {0, 1} represent if 𝑣 is part of the plan. Then, there
are the following two cases:

Case1: if 𝑥 = 1 or 𝑦 = 0, then Δ ≥ 0. Thus, 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 is optimal.

Case2: if 𝑥 = 0 and 𝑦 = 1, we prove that the algorithm eliminates

𝑣 in line 17 and Δ ≥ 0 for the new 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛. Since 𝑥 = 0, there

exists a cut 𝑐 with anchor 𝑣 .

- If 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ({𝑣}, 𝑣) > 0 ⇒ Δ ≥ 0 for the new 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛.

- Otherwise, REWRITE needs to happen in the downstream cut.

Let 𝑠1, 𝑠2, . . . , 𝑠𝑝 be 𝑣 ’s successors and 𝑐1, 𝑐2, . . . , 𝑐𝑝 the correspond-

ing sub-cuts. Since𝑜𝑝𝑡𝑃𝑙𝑎𝑛 is optimal:

∑
𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑐𝑖 , 𝑠𝑖 )+𝑐𝑜𝑠𝑡 (𝑣) ≥ 0,

where 𝑖 ∈ {𝑖 |𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑐𝑖 , 𝑠𝑖 ) < 0}. Thus, the merged cuts from the

successors can eliminate 𝑣 and the new 𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 is optimal.

□

4.3.3 Handling adaptive optimization. We implement ParCuR by

extending RouLette, which uses adaptive sharing-aware optimiza-

tion. RouLette splits batch execution into episodes, which last for

the duration of processing one small base table vector each, and

potentially uses a different global plan in each episode. RouLette

learns the cost of different subplans across episodes and eventually

converges into an efficient global plan.

The episode-oriented design conflicts with two-phase optimiza-

tion: the reuse phase chooses subexpressions to reuse based on the

baseline plan at partition granularity, whereas ParCuR switches
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Algorithm 2: Reuse Optimization Phase

1 Function REUSE_OPT_REC(𝑣) :
2 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 = ∅ ; 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 = (!𝑣 .𝑠𝑢𝑐𝑐.𝑒𝑚𝑝𝑡𝑦())? ∅ : 𝑛𝑢𝑙𝑙 ;

3 𝑎𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 = (𝑣 .𝑠𝑢𝑐𝑐.𝑒𝑚𝑝𝑡𝑦()) ;

4 for 𝑠 ∈ 𝑣 .𝑠𝑢𝑐𝑐 do
5 𝑅𝐸𝑈𝑆𝐸_𝑂𝑃𝑇_𝑅𝐸𝐶(𝑠) ;

6 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 = 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 ∪ 𝑠 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 ;

7 if 𝑠 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠(𝑠) then
8 𝑎𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 = 𝑡𝑟𝑢𝑒 ;

9 if 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 ! = 𝑛𝑢𝑙𝑙 then
10 if 𝑠 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 == 𝑛𝑢𝑙𝑙 then
11 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 = 𝑛𝑢𝑙𝑙 ;

12 else 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 = 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 ∪ 𝑠 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 ;
13 if 𝑎𝑡𝐿𝑒𝑎𝑠𝑡𝑂𝑛𝑒 then
14 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 = 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 ∪ {𝑣} ;
15 if 𝑣 .𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒𝑑 then
16 if 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 == 𝑛𝑢𝑙𝑙 𝑜𝑟 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡, 𝑣) <

𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 ({𝑣}, 𝑣) then 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 = {𝑣} ;
17 if 𝑏𝑒𝑛𝑒 𝑓 𝑖𝑡 (𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡, 𝑣) ≥ 0 then
18 𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛 = 𝑅𝐸𝑊𝑅𝐼𝑇𝐸(𝑣 .𝑏𝑒𝑠𝑡𝑃𝑙𝑎𝑛, 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 ) ;

19 𝑣 .𝑏𝑒𝑠𝑡𝐶𝑢𝑡 = 𝑛𝑢𝑙𝑙 ;
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Figure 5: DBMS components that ParCuR modifies
between multiple baseline plans during a partition’s execution.

We reconcile the two using the concept of mini-partitions. Mini-

partitions are horizontal splits of 1-st level partitions and are in-

ternally organized using 2-nd level blocks. ParCuR splits the base

table’s 1-st level partitions into fixed-size mini-partitions and then

splits materializations such that tuples derived from the same base

table mini-partition are clustered together.

ParCuR makes reuse decisions at the mini-partition granularity.

When accessing a mini-partition for the first time, ParCuR chooses

a baseline plan and makes two decisions: i) it decides whether the

baseline plan is stable, i.e., it checks whether it is still learning the

cost of the used subplans by tracking changes in cost estimates, and

ii) if the plan is stable, it uses the reuse phase to choose material-

izations to use. Then, until the mini-partition is finished, ParCuR

retains the reuse decisions and optimizes the downstream compu-

tations for each reused subexpression independently.

5 IMPLEMENTATION
We implement ParCuR on RouLette [32]. We modify the policy
and ingestion components, we introduce a materialization operator,

and add the tuner’s utilities. In general, as shown in Fig 5, ParCuR

interacts with i) the optimizer to receive a plan and rewrite it, ii)

with the executor in order to achieve partition-at-a-time execution

and use the available access methods and iii) with the storage

manager so that it selects the right views for materialization.

Tuning the Cost Model. The presented techniques rely on

RouLette’s cost models. We use the same constant factors and also

introduce the new constant 𝑐 𝑓 (Sec 4.3.2) which is set to 𝑐 𝑓 = 139.45

after using regression to fit filtering cost-estimates.

Tuning Partitioning. To tune the parameters for the two levels

of partitioning, we use the workload of Figure 6a and we find

the minimum values for mini-partition size and block size, and

the maximum sampling rate, such that overhead is less than 10%

compared to the optimal value. We set the minimum size of mini-

partitions to 2
16

to maintain low overhead for the reuse phase and

set 𝑃𝑆𝑚𝑖𝑛 = 2
16

as 1st-level partitions contain at least one mini-

partition. To keep the overhead for data and filter-skipping low,

we select the size of mini-partitions to be greater or equal to 2
16

and at least large enough that the blocks contain at least 256 tuples

each on average. Finally, to avoid significant overhead for tracking

historical accesses, we set the sampling rate to 1%.

Limitations. To combine reuse with adaptive optimization, Par-

CuR’s implementation over RouLette aligns the mini-partitions of

materializations with the mini-partitions of a base table. For this

reason, tuning revolves around one main table that defines the

partitioning schemes and the materializations. Our implementation

is applicable to common workloads such as queries on star and

snowflake schemas. Also, our prototype optimizes execution but

tuning is single-threaded. Deciding on the frequency of tuning, the

amount of resources, and how sync with execution should happen

are well-known problems but orthogonal to ours.

In-memory vs disk-based. While ParCuR relies on an in-

memory system, the performance trends are not expected to change

if we transition to a disk-based implementation. With modern SSDs

and large query batches, data access would still be fast, whereas

shared filtering of materialized results would continue to be expen-

sive. Thus, we expect different speedup due to different tradeoffs,

but the main insights would still be valid.

6 EXPERIMENTAL EVALUATION
The experiments evaluate ParCuR and show how materialization

and reuse enable it to significantly outperform pure work sharing

and achieve lower batch response times. Specifically, they demon-

strate the following:

i) Filtering costs when accessing materializations can deteriorate

the performance of work sharing, and thus building access methods

for materializations is necessary.

ii) Query-at-a-time materialization policies make suboptimal mate-

rialization decisions. Cut selection improves budget utilization by

prioritizing materialization with higher marginal benefits.

iii) Homogeneity-based partitioning reduces the required budget

for workloads with selective and correlated patterns.

iv) Even though filters change, the reuse phase reduces work-

sharing’s response time when possible and falls back to vanilla

work sharing otherwise.

v) Using partial reuse, the response time is proportional to the

required computation and performance degrades gracefully.

vi) End-to-end, ParCuR reduces the response time for the full SSBM

and TPC-H by 6.4× and 2×, respectively.
Hardware. All experiments took place on a single server that

features an Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz with 2

sockets, 12(×2) threads per socket, 376GB of DRAM, 32KB L1 cache,

1MB L2 cache and 16MB L3 cache. All experiments took place in

memory, in a single NUMA node, and use 12 threads.
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Data &Workload. We run both macro- and micro-benchmarks.

First, we perform a sensitivity analysis. We evaluate ParCuR by

varying different workload properties: i) the number of filtering

attributes, ii) the selectivity of predicates, iii) the number of joins

and the overlap between queries, iv) the available budget, and v)

the workload shift in filter attributes and predicate correlations. To

control the experiment variables, we generate synthetic data in a

star schema as well as appropriate queries. We use a fact table of

100𝑀 rows and 27 columns (24 are foreign keys), 8 dimensions with

10𝑘 rows and 9 columns each, and 16 dimensions with 10𝑘 rows

and 2 columns each. All columns are 4-byte integers. We describe

the queries in the presentation of each micro-benchmark.

Next, we show that ParCuR accelerates the queries of the widely

used SSBM [27] and TPC-H benchmarks. We use SF10 for both,

which is the largest data size for which the optimal materialization

fits in memory. We randomize the order of tuples for both datasets.

Methodology. The experiments measure batch response time,

which is the end-to-end time for processing the full batch. All

measurements are the average of 10 runs.

6.1 Impact of Reuse in Global Plans
We evaluate the benefit of reuse to shared execution’s response time.

We assume that the tuner’s workload is the same as the runtime

workload and that the materializations that minimize response time

are available (i.e., the top-level joins). Sections 6.2 and 6.3 lift the

two assumptions. We compare ParCuR against RouLette, naive

reuse, which eagerly injects materializations and has no access

methods, and QaT execution using RouLette, which is on par with

QaT performance of state-of-the-art in-memory databases.

Filter processing. We examine the impact of filters and the need

for building and using access methods for materializations. We

use 64 queries generated from 4 different templates. The templates

have 4 dimension joins each, and all templates share 3 dimension

joins. The queries have 10% selectivity and filter on the non-shared

dimension. We vary the number of filter attributes (which is equal

to the number of shared filter operators) from 1 to 8.

Figure 6a shows that access methods are necessary for accelerat-

ing work sharing. When using access methods, ParCuR’s response

time is 2.07-4.57× lower than RouLette’s, as it eliminates join pro-

cessing. RouLette is almost unaffected by increasing filter operators,

as it processes filters on the dimension. ParCuR and QaT are af-

fected because they require more 2-nd level partitions and hence

both more zone-map operations as well as larger mini-partitions,

and thus longer time until ParCuR decides that the plan is stable.

However, this effect just reduces ParCuR’s benefit over RouLette. By

contrast, the performance of naive reuse deteriorates drastically: it

computes filters over the materialization and thus their processing

time is amplified. The response time is increased with the number

of filters and is up to 3.34× than RouLette’s.

Takeaway: Reuse drastically improves performance only if filtering

cost is low. Building appropriate access methods is necessary for

injecting materializations into global plans.

Number of joins. We examine the impact of reuse in queries with

different join costs. We use two variants of the previous workload,

one where all templates share all but one join (share n-1) and an-

other where they share all but three joins (share n-3). We vary the

total number of joins per query. All queries use 1 dimension filter.

Figure 6b shows larger benefits for global plans with more joins.

Reuse-based approaches are insensitive to the number of joins,

whereas RouLette’s response time is increased. ParCuR achieves

maximum speedup of 6.33 for share n-1 and 8.60 for share n-3.

Also, there is a cross-point in naive reuse, where processing filters

becomes preferable to large joins.

Takeaway: The benefit from reuse is proportional to the elimi-

nated computation. Hence, the speedup is higher when eliminated

computation is significant, such as in join-heavy queries.

Selectivity. We examine the impact of reuse for queries with differ-

ent selectivity. We use the same workload as in the first experiment,

use one filter attribute, and vary the selectivity (1%, 2%, 5%, 10%, 20%,

50%). The experiment models the impact of downstream processing.

Figure 6c shows larger benefits when each query’s selectivity is

low. As aggregations are not affected by reuse, they close the gap

between approaches for larger selectivity when they are expensive.

Also, it is noteworthy that when aggregations are heavy enough,

QaT is more expensive than RouLette due to concurrency.

Takeaway: Reuse has a higher benefit when it eliminates the most

expensive part of the global plan. Low selectivity results in low-cost

final aggregation, and thus the relative benefit is more pronounced.

Nevertheless, reuse is the best approach across all selectivities.

6.2 Sharing-aware Materialization Policy
Wedemonstrate cut selection solutions outperform sharing-oblivious

and simple sharing-aware policies. We compare four different al-

gorithms: a) SCSK-Gr solves cut selection using Gr, b) SCSK-ISK
solves cut selection using ISK, c) Greedy Shared solves a sub-

modular knapsack problem for individual materializations, and

d) Frequency solves the submodular knapsack problem where

benefits are weighted by frequency, which is commonly used for

query-at-a-time materialization. The evaluation uses four different

workloads with 512 queries with 10% selectivity each. The queries

use filters in a column with domain [0, 100). At the end of each

workload, we mention the amount of DRAM it requires to minimize

response time.

- Workload A shows the impact of frequency. It uses 8 query

templates (𝑡1, . . . , 𝑡8). 𝑡1, . . . , 𝑡4 have 1 join each, whereas 𝑡5, . . . , 𝑡8
have 4. Template 𝑡𝑖 shares its join with 𝑡𝑖+4. The workload contains

112 queries from each of 𝑡1, . . . , 𝑡4 and 16 queries from 𝑡5, . . . , 𝑡8.

Requires at least 40GB.

- Workload B: it uses 8 query templates (𝑡5, . . . , 𝑡12). 𝑡9, . . . , 𝑡12

also have 4 joins each. Template 𝑡𝑖 shares 2 joins with template 𝑡𝑖+4.

The workload contains 64 queries from each of the templates. The

workload shows the impact of synergy. Requires at least 32GB.

-Workload B-P1: it uses workload B’s templates. However, the

filters for 𝑡5 and 𝑡6 are subranges of [0, 40), for 𝑡9 and 𝑡11 subranges

of [20, 60), for 𝑡7 and 𝑡8 subranges of [40, 80), and for 𝑡10 and 𝑡12

subranges of [60, 100). Requires at least 14.9GB.

- Workload B-P2: Similar to workload B-P1, but uses 2-D ranges.

The filters for 𝑡5 and 𝑡6 are subranges of [0, 66) × [0, 66), for 𝑡9
and 𝑡11 subranges of [0, 66) × [34, 100), for 𝑡7 and 𝑡8 subranges of

[34, 100)×[0, 66), and for 𝑡10 and 𝑡12 subranges of [34, 100)×[34, 100).

Requires at least 12.9GB.
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Figure 6: Impact of reuse based on workload parameters in a) filters, b) joins, and c) selectivity.
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Figure 7: Impact of budget for workloads A and B.
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Figure 8: Impact of budget for workloads B-P1 and B-P2.
In each experiment, we vary the storage budget to the minimum

that can minimize response time. We present the used budget nor-

malized by the one that minimizes response time (i.e., 100%). Vanilla

RouLette corresponds to 0% budget for all policies.

Sharing-awareness: Figure 7a shows that sharing-aware policies
outperform Frequency in workload A because they factor out the

frequency of occurrence for subqueries, and decide based on shared

costs. Frequency results in up to 2.03× higher response time for the

same budget because it prioritizes templates 𝑡1, . . . , 𝑡4.

Synergy-awareness: Figure 7b shows that exploiting the synergy

betweenmaterializations that compose cuts in workload B improves

the effectiveness of materializations. Both Greedy Shared and Fre-

quency preferentially materialize the shared subqueries because

they miss the synergy between the larger cuts. Thus, they both

waste budget on materializing subexpressions that are later cov-

ered by the larger cuts, and consequently, 100% is not sufficient for

minimizing response times. At 100%, they are slower by 1.87× and

1.68×, respectively.
Partition-awareness: For both workload B-P1 and B-P2, parti-

tioning reduces the required budget for minimizing response times

by 2.4× and 2.5× accordingly. Figure 8 shows that all algorithms

achieve comparable performance because partitioning simplifies

the global plans for each partition. The simplification mitigates

the effect of synergy and frequency, and thus all algorithms find

comparable solutions.

Gr vs ISK: Across all experiments, ISK performs better than Gr

as it enumerates more materializations and normalizes marginal
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Figure 9: Impact of workload shift in a) filtering attributes,
and b) query patterns’ predicates.
benefit by the required budget. By contrast, Gr suffers from subop-

timal solutions when it uses up the budget on few materializations.

Still, ISK requires significant processing time to run, e.g., 217sec in

workload B-P1, and thus Gr is preferable for real-time analysis as it

takes up to 4msec in all experiments.

Takeaway: Both sharing-awareness and partitioning improve bud-

get utilization. Incorporating both shared costs and synergy permits

spending the budget for materializing only the subexpressions that

actually reduce response times. Furthermore, partitioning enables

materializing results just for the data ranges where they are needed

and thus reduces budget requirements.

6.3 Effect of workload shift in reuse
We evaluate ParCuR under workload shift. We materialize subex-

pressions that minimize the response time for the original workload.

The experiments shift workload across two axes: a) by adding new

filtering attributes, and b) by shifting query pattern predicates. We

compare ParCuR against RouLette, naive reuse (for whichwe enable

access methods), and QaT.

Filtering attributes. Figure 9a shows that the reuse phase judi-
ciously chooses between reuse and recomputation based on filtering

costs. The experiment uses the same workload as Figure 6a. We

assume that the original workload is the batch with one filtering

attribute, hence we only build an access method for that attribute.

Naive reuse improves response time when there is no shift and

deteriorates performance otherwise. QaT’s performance depends

on the percentage of queries that use the materializations. Finally,

ParCuR improves performance when there is no shift and achieves

the same performance as work sharing when reuse is detrimental.

Query patterns’ predicates. Figure 9b shows that partial reuse
enables response times to degrade gracefully under workload shift.

The experiment uses workload B-P1 to build materializations. The

shifted workload slides the ranges for the filters of each template;

the slide controls the percentage of the shifted workload’s input

that cannot reuse materializations and is processed from base data
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Figure 10: Macro-benchmarks: a) SSB b) TPC-H.
(miss rate). ParCuR’s response time is increased proportionally to

the miss rate. Thus, when partitioning captures query patterns

and isolates misses, partial reuse improves performance against

all-or-nothing approaches that fall back to full processing (same

performance as 100% miss rate).

Takeaway: The reuse phase, as well as partitioned execution, en-

able ParCuR to benefit from materializations despite workload

shifts. ParCuR exploits materializations for the partitions where

they are available and beneficial to reducing the global plan’s cost.

6.4 Macro-benchmarks
We evaluate ParCuR using the SSBM and TPC-H benchmarks,

which contain 13 and 22 queries respectively. For each benchmark,

we compare the four materialization algorithms and vary the stor-

age budgets. We omit ISK for TPC-H, because it takes a very long

to choose a materialization.

SSBM: Figure 10a shows that ParCuR achieves a maximum speedup

of 6.4 over RouLette, which corresponds to 0% budget, and 5.4 over

QaT, and requires around 1GB for the optimal materialization. The

speedup is high because queries are mostly selective, and thus ag-

gregations make up a small percentage of processing time; the vast

majority is filters and joins. An interesting observation is that even

a small budget, at 20%, brings about a 37% decrease in response time

because bottom joins are significantly more expensive, whereas

upper joins are more selective and less time-consuming.

TPC-H: Figure 10b shows that ParCuR achieves amaximum speedup

of 2× over RouLette and 1.37× over QaT, and requires 69GB for

the optimal materialization. The speedup is lower compared to SSB

for two reasons: i) TPC-H also contains less selective queries with

heavier aggregations. When using 100% budget, aggregation takes

up around 40% of the processing time. ii) TPC-H contains LIKE

predicates that filter skipping cannot eliminate using zone-maps.

Even so, despite the shortcomings in our implementation, ParCuR

eliminates significant join costs.

Discussion: For the two benchmarks, ParCuR requires large ma-

terializations because, our homogeneity-based partitioning does

not exploit filters on dimensions. This limitation can be addressed

by: i) partitioning using the denormalized table [38], or ii) using

data-induced predicates on the fact table’s foreign keys [18]. Both

techniques are straightforward to integrate with ParCuR.

Another limitation is that ParCuR cannot eliminate predicates

such as LIKE, multi-attribute expressions, or UDFs using zone-maps.

To eliminate such predicates, partitions require additional metadata.

Sun et al. [33] handle such predicates by maintaining a feature

vector that encodes whether complex predicates are satisfied.

7 RELATEDWORK
We compare ParCuR with related work in (i) sharing, (ii) material-

ization, and (iii) partitioning.

Work sharing: Work sharing exploits overlapping work be-

tween queries in order to reduce the total cost of processing. Despite

using diverse execution models and optimization strategies, recent

work-sharing databases use global plans [1, 9, 12, 19, 24, 32] and the

Data-Query model [1, 3, 9, 19, 20, 22–24, 32]. Existing work-sharing

databases do not support reuse; they always recompute global plans

from scratch. ParCuR is compatible with such databases, and there-

fore this work’s insights are valuable for reducing their response

time for recurring workloads.

Reuse: Reuse occurs in different forms, such as semantic caching

[4, 6, 7, 31], recycling [13, 26, 28, 35], view selection [17, 25, 29,

39], and subexpression selection [15, 16, 40]. ParCuR addresses

subexpression selection in the context of sharing environments.

Sharing affects the data layout, the materialization policy, and the

reuse policy for the selected subexpressions. This is the first work

that studies the effect of work sharing on reuse. Extending semantic

caching, recycling, and view selection for shared execution is a

significant direction for future work.

ParCuR also supports partial reuse. Similar approaches include

chunk-based semantic caching [6, 7], partially materialized views

[41], partially-stateful dataflow [10], and separable operators [37].

However, in all of these approaches, the concurrent outstanding

computation can deteriorate performance. ParCuR both reuses

available materializations and uses sharing to improve scalability.

Partitioning: In modern scan-oriented analytical systems, par-

titioning is an indispensable tool for accelerating selective queries

using data skipping [33, 34]. Existing partitioning strategies focus

on minimizing data access. By contrast, ParCuR chooses a partition-

ing scheme to maximize reuse while minimizing the space overhead

for partition-granularity materialization. Doing so requires that

partitioning captures both access and computation patterns.

8 CONCLUSIONS
To provide real-time responses for large recurring workloads, we

propose ParCuR, a novel paradigm that combines the reuse of

materialized results with work sharing. ParCuR addresses the per-

formance pitfalls of incorporating materialized results into shared

global plans i) by proposing a multi-level partitioning design that

improves at the same time the utilization of the storage budget, par-

tial reuse, and filtering costs, ii) by proposing a novel sharing-aware

caching policy that improves materialization decisions, and iii) by

enhancing the sharing-aware optimizer with a phase that performs

reuse-oriented rewrites in order to minimize runtime processing.

In our experiments, ParCuR outperformed RouLette by 6.4× and

2× in the widely-used SSB and TPC-H benchmarks respectively.
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